首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在pH=6.82的Britton-Robinson缓冲溶液中,采用循环伏安法和微分脉冲溶出伏安法对醚类除草剂甲羧除草醚(Bifenox)和三氟羧草醚(Acifluofen)的伏安行为进行了研究,发现吸附时间为50 s时此电化学体系达到平衡,而且微分脉冲溶出伏安法能给出较高的灵敏度,甲羧除草醚和三氟羧草醚分别在-685 mV和-700 mV处具有良好还原峰,但由于峰电位接近而谱峰重叠,很难分别测定.本文采用化学计量学方法来解析重叠峰并完成这两种除草剂的定量分析.甲羧除草醚和三氟羧草醚的测定线性范围分别为0.02~0.18 μg·5mL~(-1)和0.02~0.16 μg·5mL~(-1),检出限分别为0.0073 μg·5mL~(-1)和0.0068 μg·5mL~(-1).利用该方法对水样中的甲羧除草醚和三氟羧草醚进行直接测定,获得了较好的定量分析结果.  相似文献   

2.
This work describes a sequential injection analysis (SIA) method for on-line strippping voltammetric determination of Pb(II), Cd(II) and Zn(II) using an injection-moulded electrochemical fluidic chip consisting of 3 conductive carbon fiber-loaded polymer electrodes embedded in a plastic fluidic holder. The sample containing the target metals and a solution containing Bi(III) were aspirated in the holding coil of the SIA manifold. Then, the flow was reversed and the two solutions were directed to the fluidic cell through a mixing coil which induced mixing of the two zones. Upon reaching the cell, simultaneous reduction of the target metals and Bi(III) occurred resulting in the formation of a metal-Bi alloy on the working electrode. Finally, the accumulated metals were stripped off the bismuth-film electrode via a positive potential scan and the oxidation current was recorded. The experimental variables (concentration of the bismuth plating solution, deposition potential, sample volume, stripping mode) were investigated and the potential interferences were assessed. The limits of quantification were 2.8 μg L−1 for Pb(II), 3.6 μg L−1 for Cd(II) and 4.2 μg L−1 for Zn(II) and the the within-chip and between-chip % relative standard deviations were ≤6.3 % and ≤14 %, respectively. Finally, the sensor was applied to the determination of trace metals in a fish food sample.  相似文献   

3.
A novel carbon paste electrode modified with nanosized mesoporous MCM-41 was prepared, and used as an electrochemical sensor to study the electro oxidation of levodopa (LD), carbidopa (CD) and their mixtures. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and CD has been explored at the modified electrode. The electrochemical sensor displayed a good resolving function for the overlapping voltammetric responses of LD and CD into two separate peaks with a potential difference of 370 mV. DPV peak currents of LD increased linearly with concentration over the 0.13 μM to 1250.00 μM range and exhibited a detection limit of 0.072 μM. Also, the proposed electrochemical sensor was used for the determination of LD and CD in some real samples, using the standard addition method.  相似文献   

4.
A new analytical voltammetric procedure for the simultaneous determination of copper(II), lead(II), cadmium(II), zinc(II), chromium(VI), and manganese(II) in two kinds of dialysis fluid (peritoneal and haemodialysis fluids) is described. The voltammetric measurements were performed using, as working electrode, a stationary mercury electrode, and a platinum electrode and a Agmid R:AgClmid R:KCl ((sat.)) electrode as auxiliary and reference electrodes, respectively, employing 0.1 mol L(-1) dibasic ammonium citrate solution pH 6.9 as supporting electrolyte. For all the elements, the accuracy, expressed as relative recovery R%, was very satisfactory being in the range 94-105%, the precision, expressed as relative standard deviation s(r)%, was lower than 6%, while the limits of detection were of the order of a few units of microg L(-1). The analytical voltammetric procedure has been validated by comparison with spectroscopic (graphite furnace atomic absorption spectroscopy, GFAAS) measurements.  相似文献   

5.
Wei Wei Zhu  Nian Bing Li  Hong Qun Luo   《Talanta》2007,72(5):1733-1737
A stannum film electrode has been developed for the simultaneous determination of trace levels of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry (DPASV). The stannum film electrode was generated in situ by depositing simultaneously the stannum film and the metals obtained by reduction of Cd(II) and Cr(III) at −1.4 V on a glassy carbon electrode. Then, the reduced products were oxidized by scanning the potential of the electrode from −1.4 to −0.4 V using DPASV. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution. The possible mechanism of this design was proposed. Under the optimized working conditions, the detection limit was 2.0 and 1.1 μg l−1 for Cr(III) and Cd(II) at a deposition time of 3 min. Finally, the stannum film electrode was successfully applied to the determination of Cd(II) in tap water with satisfactory results.  相似文献   

6.
Flow injection (FI) and sequential injection (SI) systems with anodic stripping voltammetric detection have been exploited for simultaneous determination of some metals. A pre-plated mercury film on a glassy carbon disc electrode was used as a working electrode in both systems. The same film can be repeatedly applied for at least 50 analysis cycles, thus reducing the mercury consumption and waste. A single line FI voltammetric system using an acetate buffer as a carrier and an electrolyte solution was employed. An injected standard/sample zone was mixed with the buffer in a mixing coil before entering a flow cell. Metal ions were deposited on the working electrode by applying a potential of −1.1 V vs Ag/AgCl reference electrode. The stripping was performed by anodically scanning potential of working electrode to +0.25 V, resulting a voltammogram. Effects of acetate buffer concentration, flow rate and sample volume were investigated. Under the selected condition, detection limits of 1 μg l−1 for Cd(II), 18 μg l−1 for Cu(II), 2 μg l−1 for Pb(II) and 17 μg l−1 for Zn(II) with precisions of 2–5% (n=11) were obtained. The SI voltammetric system was similar to the FI system and using an acetate buffer as a carrier solution. The SI system was operated by a PC via in-house written software and employing an autotitrator as a syringe pump. Standard/sample was aspirated and the zone was then sent to a flow cell for measurement. Detection limits for Cd(II), Cu(II), Pb(II) and Zn(II) were 6, 3, 10 and 470 μg l−1, respectively. Applications to water samples were demonstrated. A homemade UV-digester was used for removing organic matters in the wastewater samples prior to analysis by the proposed voltammetric systems.  相似文献   

7.
《Analytical letters》2012,45(6):1235-1254
Abstract

A simple and reliable procedure simultaneously to determine seven trace and/or ultratrace toxic metals in a single sample of environmental plants has been presented. The procedure is based on the simultaneous determination of Cu, Pb and Cd by differential pulse anodic stripping voltammetry, of Zn and Mn by differential pulse voltammetry and of Ni and Co by differential pulse adsorption voltammetry at the hanging mercury drop electrode. The details of sampling, washing and drying of samples and the approach of digestion and preparation of samples for voltammetric determination have been investigated. The method has been applied to determination of the seven metals in grass and hucerne from different environments.  相似文献   

8.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

9.
The voltammetric method for simultaneous determination of some disinfectants at glassy carbon electrode modified with multiwalled carbon nanotubes is presented. The examined compounds are: 2-phenylphenol, 4-chloro-3-methylphenol, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol and 2-mercaptobenzothiazole. The measurements has been performed using cyclic voltammetry and differential pulse voltammetry in Britton-Robinson buffers as supporting electrolytes. The modification of electrode surface with multiwalled carbon nanotubes enhances the peak current. It is possible to measure mixtures of two compounds (2-phenylphenol and 2-mercaptobenzothiazole, 4-chloro-3-methylphenol and 2-mercaptobenzothiazole, triclosan and 2-mercaptobenzothiazole) in the solution of pH 9.9, which provides the best separation of oxidation peaks.  相似文献   

10.
Electrochemical stripping analysis is recognized as a powerful technique for trace metals owing its remarkable sensitivity, relatively inexpensive instrumentation, ability for multielement determination and capable of determining elements accurately at trace and ultra-trace levels. The success of voltammetric sensing procedure depends mainly on the proper choice and preparation of the working electrode. The article reviews the development and application of metal film electrodes (bismuth, lead, and antimony film electrodes) prepared with a reversibly deposited mediator for stripping voltammetric determination of metal ions (Ni(II), Sn(IV), Hg(II), U(VI), Cd(II), Pb(II), and Cr(VI)). In this electrochemical, defect-mediated, thin-film growth method, the mediator is periodically deposited and the stripped from the surface, and this serves to significantly increase the density of islands of atoms of interest metal, what in consequence improves the electrochemical properties of these electrodes, because of the increase in the active surface area of electrode.  相似文献   

11.
《Electroanalysis》2003,15(17):1397-1402
A new analytical procedure for the simultaneous determination of aluminum(III) and iron(II) in two kinds of dialysis fluids (peritoneal and hemodialysis fluids) by differential pulse adsorptive stripping voltammetry (DPAdSV) is described. The voltammetric measurements were performed using, as working electrode, a stationary mercury electrode, and a platinum electrode and a Ag|AgCl|KCl(sat.) electrode as auxiliary and reference electrodes, respectively, employing acetate buffer solutions at different pH as supporting electrolyte. As complexing agents, Solochrome Violet RS, Palatine Chrome Black 6BN, Chromazurol S and Eriochrome Black T were employed. For both elements, the accuracy, expressed as relative recovery R%, was very satisfactory being in the range 94–105%, the precision as repeatability, expressed as relative standard deviation sr%, was lower than 6%, while the limits of detection were of the order of a few units of μg/L. The analytical voltammetric procedure has been validated by comparison with spectroscopic (graphite furnace atomic absorption spectroscopy, GFAAS) measurements.  相似文献   

12.
A new methodology is presented for the simultaneous determination of chromium(VI) and aluminum(III) by differential‐pulse adsorptive stripping voltammetry (DPAdSV) with Pyrocatechol Violet (PCV) as a complexing agent. In this procedure, a partial least‐squares regression (PLS) is used for the resolution of the strongly overlapping voltammetric signals from mixtures of CrVI and AlIII in the presence of PCV. The procedure was successfully applied to the determination of these metals in river water.  相似文献   

13.
Gao Z  Li P  Zhao Z 《Talanta》1991,38(10):1177-1184
The utility of carbon-paste electrodes modified with 2,2'-bipyridyl and Nafion for the differential pulse voltammetric determination of iron(II) in aqueous medium is demonstrated. The method is based on formation of the 2,2'-bipyridyl complex of iron(II) and its accumulation by the Nafion. The differential pulse voltammetric response of the accumulated complex is used as the analytical signal. The response was evaluated with respect to carbon-paste composition, preconcentration time, pH, iron(II) concentration and other variables. A 3-min accumulation period permits measurement of iron(II) down to 10(-8)M, and a relative standard deviation of 3.8% for 2 x 10(-6)M iron(II). Rapid and convenient chemical renewal allows use of a single modified carbon-paste electrode in multiple analytical measurements over several days. The proposed procedure was applied to the determination of iron in certified standard reference materials and trace iron in natural waters.  相似文献   

14.
The voltammetric behaviour of three 5-nitroimidazoles,metronidazole,tinidazole and ornidazole,was investigated,and a method was developed for the simultaneous determination of these compounds,based on their reduction at a hanging mercury drop electrode(HMDE) in pH 8.95 buffer with differential pulse voltammetric(DPV) approach.Well defined voltammetric waves with peak potentials of -692,-640 and -652 mV were observed for these compounds,respectively.It is difficult to determine them individually from their mixtures without preseparation,for their voltammetric peaks overlapped seriously,so the chemometrics were used to resolve the overlapped voltammogram and quantify the mixtures.The proposed method was successfully applied to the determination of three 5-nitroimidazoles in milk and honey samples.  相似文献   

15.
A three‐sensor array consisting of a graphite‐epoxy composite electrode (GEC), 4‐carboxybenzo‐18‐crown‐6‐GEC and 4‐carboxybenzo‐15‐crown‐5‐GEC was employed for the simultaneous determination of Cd(II), Pb(II) and Hg(II) by differential pulse anodic stripping voltammetry (DPASV). Sensors were firstly studied for the determination of Hg(II); secondly, peak current responses confirmed that all sensors showed differentiated response for the three considered metals. A response model was developed to resolve mixtures of Cd(II), Pb(II) and Hg(II) at the µg L?1 level; Discrete Wavelet Transform was selected as preprocessing tool and artificial neural network used for the modelling of the obtained responses.  相似文献   

16.
This work reports the simultaneous determination of Cd(II), Pb(II) and Zn(II) at the low μg l−1 concentration levels by square wave anodic stripping voltammetry (SWASV) on a bismuth-film electrode (BFE) plated in situ. The metal ions and bismuth were simultaneously deposited by reduction at −1.4 V on a rotating glassy carbon disk electrode. Then, the preconcentrated metals were oxidised by scanning the potential of the electrode from −1.4 to 0 V using a square-wave waveform. The stripping current arising from the oxidation of each metal was related to the concentration of each metal in the sample. The parameters for the simultaneous determination of the three metals were investigated with the view to apply this type of voltammetric sensor to real samples containing low concentrations of metals. Using the selected conditions, the limits of detection were 0.2 μg l−1 for Cd and for Pb and 0.7 μg l−1 for Zn at a preconcentration time of 10 min. Finally, BFE's were successfully applied to the determination of Pb and Zn in tapwater and human hair and the results were in satisfactory statistical agreement with atomic absorption spectroscopy (AAS).  相似文献   

17.
In spite of the many unstandardized literature methods for the determination of the antioxidant activity/capacity (AOA/AOC) of food extracts, there are a very limited number of documented voltammetric nanosensors, despite the fact that commercial electrochemical devices for rapid AOA estimation are on the rise. The mechanism of the developed sensor is based on the chemical reduction of hexacyanoferrate(III) to hexacyanoferrate(II) by antioxidants, followed by the decrement of the cathodic current intensity of hexacyanoferrate(III) in proportion to antioxidant concentration. During voltammetric measurements, the surface of the glassy carbon electrode was coated with an o-phenylenediamine-aniline copolymer and gold nanoparticles were accumulated on this electrode surface to increase the conductivity. It was shown that the developed electrode gave a reversible voltammogram for the hexacyanoferrate(III)/(II) redox couple, and that the cathodic peaks due to strong antioxidants having a standard redox potential less than that of this couple (Eo < 0.36 V) continuously emerged at very close peak potentials. Single antioxidants as well as binary–ternary mixtures were analyzed with this electrode using square wave voltammetry. The trolox-equivalent antioxidant capacities of selected antioxidants were evaluated with this electrode. The modified voltammetric sensor allowed precise measurement of the total antioxidant capacity of plant tea samples such as green tea, lime, and coral moss, and was not interfered by the food preservative sulfite. The results of the developed voltammetric sensor were statistically compared with those of a reference differential pulse voltammetry-cupric reducing antioxidant capacity electrochemical method established in literature.  相似文献   

18.
A voltammetric method is proposed for the simultaneous determination of tryptophan, cysteine, and tyrosine using multivariate calibration techniques. Various electrodes and voltammetric techniques were explored to ascertain the optimum measurement strategy. Among them, differential pulse voltammetry (DPV) with a Pt electrode was selected as analytical technique since it provided a suitable compromise between sensitivity and reproducibility while allowing the oxidation peaks of the three compounds to be reasonably discriminated. The sensitivity of DPV with Pt electrode for Trp standards was 8.4×10−2 A l mol−1, the repeatability 3.7% and the detection limit below 10−7 M. The lack of full selectivity of the voltammetric data was overcome using multivariate calibration methods on the basis of the differences in the voltammetric waves of each compound. The accuracy of predictions was evaluated preliminarily from the analysis of three-component synthetic mixtures. Subsequently, this method was applied to the analysis of oxidizable amino acids in feed samples. Results obtained were in good concordance with those given by the standard method using an amino acid analyzer.  相似文献   

19.
A differential pulse anodic stripping voltammetric procedure was developed for the determination of trace amounts of iron(II) in the presence of iron(III) at a carbon paste electrode (CPE) modified with dithiodianiline and gold nanoparticle. At the pH working of 3.0, a wide concentration range from 0.1 nM to 100 nM was observed with the detection limit of 0.05 nM. The relative standard deviation for a solution containing 50 nM of iron(II) was found to be 3.11 % (n=9). Possible interferences from the coexisting ions were also investigated. The validity of the method and applicability of the sensor were successfully tested by determining of iron(II) in lentil, wheat seed and barley seed samples.  相似文献   

20.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号