首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.  相似文献   

2.
Ab initio molecular dynamics simulations are presented of vibrational dynamics and spectra of crystal HCl hydrates. Depending on the composition, the hydrates include distinct protonated water forms, which in their equilibrium structures approximate either the Eigen ion H3O+(H2O)3 (in the hexahydrate) or the Zundel H2O...H+...OH2 ion (in the di- and trihydrate). Thus, the hydrates offer the opportunity to study spectra and dynamics of distinct species of protonated water trapped in a semirigid solvating environment. The experimentally measured spectra are reproduced quite well by BLYP/DZVP-level calculations employing Fourier transform of the system dipole. The large overall width (800-1000 cm-1) of structured proton bands reflects a broad range of solvating environments generated by crystal vibrations. The aqueous HCl solution was also examined in search of an objective criterion for separating the contributions of "Zundel-like" and "Eigen-like" protonated forms. It is suggested that no such criterion exists since distributions of proton-related structural properties appear continuous and unimodal. Dipole derivatives with respect to OH and O...H+ stretches in water and protonated water were also investigated to advance the understanding of the corresponding IR intensities. The effects of H bonding and solvation on the intensities were analyzed with the help of the Wannier centers' representation of electron density.  相似文献   

3.
The oxygen K edge X-ray absorption spectra of aqueous HCl and NaCl solutions reveal distinct perturbations of the local water molecules by the respective solutes. While the addition of NaCl leads to large spectral changes, the effect of HCl on the observed X-ray absorption spectrum is surprisingly small. Density functional theory calculations suggest that this difference primarily reflects a strong blue shift of the hydrated proton (in either the Eigen (H9O4+) or Zundel (H2O5+) forms) spectrum relative to that of H2O, indicating the tighter binding of electrons in H3O+. This spectral shift counteracts the spectral changes that arise from direct electrostatic perturbation of water molecules in the first solvation shell of Cl-. Consequently, the observed spectral changes effected by HCl addition are minimal compared to those engendered by NaCl. Additionally, these results indicate that the effect of monovalent cations on the nature of the unoccupied orbitals of water molecules in the first solvation shell is negligible, in contrast to the large effects of monovalent anions.  相似文献   

4.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

5.
There is an ongoing debate on the nature of hydration of the hydrogen ion, H+ in solution, and the extent to which Eigen or Zundel complexes occur. Here, our previous neutron diffraction data on a solution of 1:9 HCl in water are reanalyzed using a new starting hypothesis for the Monte Carlo simulation of the data. Either bare H+ ions, all H3O+ ions, or all H5O2 + ions are allowed in the simulation box together with the water and chlorine ions. All three simulations give a satisfactory fit to the experimental data. From the simulation with simple H+ ions, it is found that all H+ ions form one strong and very short hydrogen bond with water molecules and that on average 75% of them also engage in a second, slightly longer hydrogen bond. This result can be interpreted alternatively either in terms of the formation of a high percentage of asymmetric Zundel complexes or in terms of the formation of distorted H3O+ ions, which in turn form two or three hydrogen bonds, respectively, with neighboring molecules opposite their unbonded hydrogen sites (thus forming Eigen complexes). Therefore the new analysis is not inconsistent with our previous conclusion that the solution consists primarily of Eigen complexes, but does highlight the difficulty of making a clear distinction between Eigen and Zundel complexes due to the continuous random network of hydrogen bonds formed between water and hydrated protons. The role of hydrogen ion to chloride counterion contacts is also discussed in these solutions.  相似文献   

6.
This paper attempts to elucidate the number and nature of the hydration spheres around the proton in an aqueous solution. This phenomenon was studied in aqueous solutions of selected acids by means of Fourier transform infrared spectroscopy of semiheavy water (HDO), isotopically diluted in H(2)O. The quantitative version of difference spectrum procedure was applied for the first time to investigate such systems. It allowed removal of bulk water contribution and separation of the spectra of solute-affected HDO. The obtained spectral data were confronted with ab initio calculated structures of small gas-phase and polarizable continuum model (PCM) solvated aqueous clusters, H+(H2O)n, n=2-8, in order to help in establishing the structural and energetic states of the consecutive hydration spheres of the hydrated proton. This was achieved by comparison of the calculated optimal geometries with the interatomic distances derived from HDO band positions. The structure of proton hydration shells outside the first hydration sphere essentially follows the model structure of other hydrated cations, previously revealed by affected HDO spectra. The first hydration sphere complex in diluted aqueous solutions was identified as an asymmetric variant of the regular Zundel cation [The Hydrogen Bond: Recent Developments in Theory and Experiments, edited by P. Schuster, G. Zundel, and C. Sandorfy (North-Holland, Amsterdam, 1976), Vol. II, p. 683], intermediate between the ideal Zundel and Eigen structures [E. Wicke et al., Z. Phys. Chem. Neue Folge 1, 340 (1954)]. Evidence was found for the existence of strong and short hydrogen bonds, with oxygen-oxygen distance derived from the experimental affected spectra equal 2.435 A on average and in the PCM calculations about 2.41-2.44 A. It was also evidenced for the first time that the proton possesses four well-defined hydration spheres, which were characterized in terms of hydrogen bonds' lengths and arrangements. Additionally, an outer hydration layer, shared with the anion, as well as loosely bound water molecules interacting with free electron pairs of the central complex were detected in the affected spectra.  相似文献   

7.
We propose a new type of sulfonated aromatic polyarylenes as candidate building blocks for proton exchange membranes. Density functional theory calculations and ab initio molecular dynamics simulations suggest that desulfonation is limited at high temperatures, owing to the strong aryl-SO3H bond induced by the electron-deficient aromatic ring, and that the proposed polymers exhibit good thermomechanical stability due to the robust aromatic main-chain repeating unit. Simulations also emphasize the importance of the Grotthuss-type mechanism, with interconversion between Eigen (H9O4+) and Zundel cations (H5O2+) as limiting structures, for the hydrated proton transport in the vicinity of the sulfonic acid groups.  相似文献   

8.
The protonated acetylene cation, C2H3+, (also known as the vinyl cation) and the proton-bound acetylene dimer cation (C4H5+) are produced by a pulsed supersonic nozzle/pulsed electrical discharge cluster source. The parent ions are also generated with weakly attached argon "tag" atoms, e.g., C2H3+Ar and C4H5+Ar. These ions are mass selected in a specially designed reflectron time-of-flight mass spectrometer and studied with infrared laser photodissociation spectroscopy in the 800-3600 cm-1 region. Vibrational resonances are detected for both ions in the C-H stretching region. C2H3+ has a strong vibrational resonance near 2200 cm-1 assigned to the bridged proton stretch of the nonclassical ion, while C4H5+ has no such free-proton vibration. Instead, C4H5+ has resonances near 1300 cm-1, consistent with a symmetrically shared proton in a di-bridged structure. Although the shared proton structure is not the lowest energy isomer of C4H5+, this species is apparently stabilized under the supersonic beam conditions. Larger clusters containing additional acetylene units are also investigated via the elimination of acetylene. These species have new IR bands indicating that rearrangement reactions have taken place to produce core C4H5+ ions with the methyl cyclopropane cation structure and/or the protonated cyclobutadiene isomer. Ab initio (MP2) calculations provide structures and predicted spectra consistent with all of these experiments.  相似文献   

9.
This article highlights the results of a detailed study of hydrogen bonding in the first and the second solvation shells of Eigen (H3O+) and Zundel (H5O2+) cations solvated by water in a stepwise manner. It is evident from the results that an electron density analysis clearly distinguishes the first and the second solvation shell and helps in quantifying the strength of hydrogen bonding in these clusters.  相似文献   

10.
Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.  相似文献   

11.
The energetics, dynamics, and infrared spectroscopy of the shared proton in different chemical environments is investigated using molecular dynamics simulations. A three-dimensional potential energy surface (PES) suitable for describing proton transfer between an acceptor and a donor oxygen atom is combined with an all-atom force field to carry out reactive molecular dynamics simulations. The construction of the fully dimensional PES is inspired from the established mixed quantum mechanics/molecular mechanics treatment of larger systems. The "morphing potential" method is used to transform the generic PES for proton transfer along an O...H+...O motif into a three-dimensional PES for proton transfer in protonated diglyme. Using molecular dynamics simulations at finite temperature, the gas phase infrared spectra are calculated for both species from the Fourier transform of the dipole moment autocorrelation function. For protonated diglyme the modes involving the H+ motion are strongly mixed with other degrees of freedom. At low temperature, the O...H+...O asymmetric stretching vibration is found at 870 cm-1, whereas for H5O2+ this band is at 724 cm-1. As expected, the vibrational bands of protonated diglyme show no temperature dependence whereas for H5O2+ at T = 100 K the proton transfer mode is found at 830 cm-1, in good agreement with 861 cm-1 from very recent molecular dynamics simulations.  相似文献   

12.
Predissociation spectra of the H(5)O(2) (+)RG(n)(RG = Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (3350-3850 cm(-1)) and shared proton (850-1950 cm(-1)) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H(5)O(2) (+) [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)], indicating that the symmetrical H(5)O(2) (+) "Zundel" ion remains largely intact in H(5)O(2) (+)Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H(5)O(2) (+)Ar, and is dominated by two sharp transitions at 928 and 1047 cm(-1), with a weaker feature at 1763 cm(-1). The H(5)O(2) (+)Ar(n),n = 1-5 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H(5)O(2) (+) rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H(5)O(2) (+). These results are consistent with assignment of the strong low-energy bands in the H(5)O(2) (+)Ne spectrum to the vibration of the shared proton mostly along the O-O axis, with the 1763 cm(-1) band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.  相似文献   

13.
The photoreaction of vacuum-dried rhodopsin was monitored by UV-visible absorption spectroscopy. The results indicate that in dry rhodopsin, isorhodopsin and lumirhodopsin a protonation equilibrium exists between the protonated and the non-protonated Schiff base. On hydration the water stabilizes the protonated forms. In metarhodopsin-I the protein itself is able to stabilize the protonated Schiff base. The direct involvement of water in the retinal binding site was demonstrated by measuring the rhodopsin-bathorhodopsin FTIR difference spectra of rhodopsin hydrated with H2O and H2(18)O. The results are discussed with respect to the problem of charge stabilization and energy storage.  相似文献   

14.
Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.  相似文献   

15.
使用基于多态经验价键模型的分子动力学模拟, 对水溶液中质子的水合结构及其在质子传递过程中的动力学过程进行了研究. 在价键模型的方法下, 质子的水合结构主要以H9O4+(Eigen)以及过渡态的H5O2+(Zundel)结构形态存在, 且在这两种结构中以Eigen的形态表现明显. 通过对质子传递过程中不同水合结构的态密度频谱分析, 发现一个在2000~3000 cm-1范围内的明显连续的宽吸收谱带, 主要归因于Eigen结构的贡献, 这些特征峰的出现与水合氢离子第一溶剂化层内的强氢键作用密切相关. 对于Zundel的结构, 在1760 cm-1处出现一个较为明显的肩峰, 归属为质子传递模式的特征振动. 通过对质子水合结构态密度频谱的分析, 可望增强对于稀酸溶液红外光谱中的连续宽吸收带以及质子传递的微观动力学过程的理解.  相似文献   

16.
DFT:B3LYP ab initio molecular dynamics (MD) approach is used to elucidate the properties of the Zundel and Eigen, H5O2+ and H9O4+, proton complexes in the triplet state. The simulation considers the complexes in the gas phase (isolated complexes) and inside the clusters composed of 32, 64, and 128 water molecules, mimicking the behavior of aqueous solutions. MD simulations reveal three distinct periods. For the complex in solutions, the periods are smoothed out. The H5O2+ and H9O4+ complexes in the triplet state undergo structural rearrangements, which eventually result in hydrogen elimination. For the H5O2+, the hydrogen is eliminated from the center of the water cluster, whereas for the H9O4+ it is removed from a near-surface water molecule. The rate of hydrogen elimination decreases with increasing the number of water molecules surrounding the complex.  相似文献   

17.
The structures of the protonated water cluster H+(H2O)8 have been globally explored by the scaled hypersphere search method. On the Hartree-Fock potential energy surface 174 isomers were found, among which 168 were computed to be minima at the B3LYP/6-31+G** level, and their energies were further refined at the level of MP2/6-311++G(3df,2p). The global minimum on the potential energy surface computed at the B3LYP/6-31+G** level shows a cagelike structure with the "Eigen" motif, while the lowest-free-energy isomer has a five-membered-ring structure at 170 K and a chain form at 273 K. The present results are well in line with previous experimental findings. In addition, the ADMP (atom-centered density matrix propagation) simulation indicates that the extra proton in the lowest-free-energy isomer (170 K), which has a five-membered ring and the "Zundel" feature, is often in an asymmetrical hydrogen bond.  相似文献   

18.
To clarify the nature of the motions contributing to the observed multiplet structures in the low-energy (900-1800 cm-1) vibrational spectrum of the H5O2+ "Zundel" ion, we report the evolution of its vibrational fingerprint with sequential H/D isotopic substitution in a predissociation study of the Ar complexes. Of particular interest is the D4HO2+ complex, which displays a single intense band in the vicinity of the asymmetric OHO stretch of the bridging proton, in contrast to the more complex multiplet observed for both H5O2+ and D5O2+ isotopologues. These intensity patterns are consistent with the recent assignment of the bridging proton band's doublet in the H5O2+.Ne spectrum to a 2 x 2 Fermi resonance interaction between the shared proton stretch and a complex background level primarily derived from the O-O stretch together with two quanta of the wagging vibration involving the pyramidal deformations of the flanking H2O groups (Vendrell, O.; Gatti, F.; Meyer, H.-D. Angew. Chem., Int. Ed. 2007, 46, 6918). In addition, the observed trends rule out assignment of the approximately 1800 cm-1 feature in H5O2+ to a combination band of the bridging proton vibration with the O-O stretch, providing a secure foundation for the previously reported scheme that attributes this band to the out-of-phase intramolecular bending fundamental. The observed feature occurs at an unusually high energy for typical HOH bends, however, and we explore the participation of the bridging proton in these eigenstates by following how the calculated harmonic spectrum evolves when artificially large masses are assigned to the proton. The empirical assignments are supported by anharmonic estimates of the isotope shifts evaluated by the diffusion Monte Carlo method.  相似文献   

19.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

20.
Experimental observation and time relaxation measurement of the hydrated proton Eigen form [H(3)O(+)(H(2)O)(3)] are presented here. Vibrational time-resolved spectroscopy is used with an original method of investigating the proton excess in water. The anharmonicity of the time-resolved spectra is characteristic of the Eigen-type proton geometry. Proton relaxation occurs in less than 200 fs. A calculation of the potential energy confirms the experimental result and the Eigen cation lifetime is in good agreement with previous molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号