首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
混沌时间序列多步自适应预测方法   总被引:11,自引:0,他引:11       下载免费PDF全文
孟庆芳  张强  牟文英 《物理学报》2006,55(4):1666-1671
针对混沌时间序列局域自适应预测方法在多步预测中预测器系数无法调节的问题,根据混沌时间序列的短期可预测性及自适应算法的自适应跟踪混沌运动轨迹的特点,提出了混沌时间序列多步自适应预测方法.仿真结果表明,此方法的多步预测性能明显好于局域自适应预测方法的多步预测性能. 关键词: 多步自适应预测方法 局域自适应预测方法 混沌时间序列  相似文献   

2.
混沌时间序列的Volterra自适应预测   总被引:19,自引:1,他引:19       下载免费PDF全文
张家树  肖先赐 《物理学报》2000,49(3):403-408
基于混沌动力系统相空间的延迟坐标重构,提出了一种预测混沌时间序列的Volterra自适应滤波预测法,对8种低维混沌序列采用二阶Volterra自适应滤波器进行预测的实验结果表明:当滤波器的长度Nl足够大时,Volterra自适应滤波器能够有效地预测低维混沌时间序列,且Nl的选择不仅与D2有关,还与混沌映射的光滑程度有关 关键词:  相似文献   

3.
毛剑琴  姚健  丁海山 《物理学报》2009,58(4):2220-2230
应用模糊树模型,对混沌时间序列进行建模和预测.该方法可以根据建模数据在空间中的分布信息,基于二叉树结构自适应划分输入空间,得到模糊子空间,在与叶节点对应的子空间上建立线性函数作为模糊规则的后件,用隶属度函数将各分片线性函数光滑连接,最后得到一个精度比较高的非线性映射.通过对Mackey-Glass、Lorenz和Henon混沌时间序列的建模和预测研究,仿真结果表明,该方法具有建模精度高、运行速度快、泛化能力强、预测步数多、适用范围广等优点. 关键词: 模糊树模型 混沌时间序列 预测  相似文献   

4.
基于Bernstein多项式的自适应混沌时间序列预测算法   总被引:3,自引:0,他引:3       下载免费PDF全文
闫华  魏平  肖先赐 《物理学报》2007,56(9):5111-5118
提出了利用Bernstein多项式对混沌时间序列的动力学方程进行建模的方法,并将该方法与递推最小二乘(RLS)算法相结合,从而可以自适应地逼近混沌时间序列的动力学特性,以达到预测的目的.理论分析和仿真实验表明该方法对一些常见的混沌时间序列具有较高的预测精度和较理想的准确预测率.由于RLS算法的收敛速度较快,因此该方法比较适合于对短混沌时间序列进行实时预测. 关键词: 混沌 预测 Bernstein多项式 RLS算法  相似文献   

5.
基于分形自仿射的混沌时间序列预测   总被引:5,自引:0,他引:5       下载免费PDF全文
贺涛  周正欧 《物理学报》2007,56(2):693-700
从混沌与分形的关系出发,基于奇怪吸引子的分形结构和时间序列的自仿射特性,提出了一种混沌时间序列的预测方法.采用迭代函数系统跟踪混沌的局部运动轨迹,由此确定统计意义上仿射性能最优的时间序列段,并根据吸引子定理和拼贴定理建立预测模型.以Mackey-Glass混沌系统、脑电信号和Lorenz混沌系统等三种混沌系统为例进行预测试验,结果表明本方法能对混沌时间序列进行准确预测,且对混沌时间序列先验知识要求少,具有广泛的实用性. 关键词: 自仿射 迭代函数系统 混沌时间序列 预测  相似文献   

6.
一种预测混沌时间序列的模糊神经网络方法   总被引:6,自引:0,他引:6       下载免费PDF全文
胡玉霞  高金峰 《物理学报》2005,54(11):5034-5038
给出了一种预测混沌时间序列的模糊神经网络及其学习方法,给出的方法能直接从数据中提取模糊规则,经过优化得到最佳模糊规则库,并利用神经网络的自学习功能修改隶属函数的参数和网络的权值,减少了规则的匹配过程,加快了推理速度,增强了网络的自适应能力. 使用该神经网络及其学习方法对Lorenz混沌时间序列进行了预测仿真研究,试验结果表明给出的预测工具和方法是有效的. 关键词: 模糊神经网络 模糊规则提取 混沌时间序列预测  相似文献   

7.
基于混沌算子网络的时间序列多步预测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
修春波  徐勐 《物理学报》2010,59(11):7650-7656
结合相空间重构理论和时间序列分析理论,提出一种用于时间序列多步预测的网络模型.网络采用多个混沌算子加权求和的形式构成.网络各层单元采用固定权值连接,混沌算子的控制参数利用混沌优化算法进行训练调节,从而控制预测网络的动力学行为.利用已知时间序列数据构造出训练样本,训练样本在网络训练过程中仅使用一次,促使网络的动力学特性随时间的推移而变化,并逐渐逼近被预测系统的动力学特性,最终完成对未来时刻数据的预测.在对理论数据进行预测分析时,通过计算预测序列的Lyapunov指数验证了预测网络的有效性.在对实际时间序列的预测过程中,该网络表现出了良好的预测性能.仿真结果表明,该预测网络可对多种时间序列在一定的预测步长范围内实现有效的预测.  相似文献   

8.
基于模糊边界模块化神经网络的混沌时间序列预测   总被引:3,自引:0,他引:3       下载免费PDF全文
马千里  郑启伦  彭宏  覃姜维 《物理学报》2009,58(3):1410-1419
提出一种模糊边界模块化神经网络(FBMNN)的混沌时间序列预测方法,该方法先对混沌时间序列观测点重构的相空间进行模块化划分,划分点的选取由遗传算法自动寻优.然后定义一个模糊隶属度函数,在划分边界一侧按照一定的模糊隶属度设定模糊边界带,通过模糊化处理,解决了各模块划分点附近预测结果的跳跃问题.最后每一模块,及其模糊边界的样本点都对应一个递归神经网络进行训练,通过预测合成模块输出结果.该方法对三个混沌时间序列基准数据集Mackey-Glass,Lorenz,Henon进行实验,结果表明该方法有效地提高了混沌时间序列预测效果. 关键词: 模糊边界 模块化神经网络 混沌时间序列 预测  相似文献   

9.
张春涛  马千里  彭宏 《物理学报》2010,59(11):7623-7629
提出一种混沌时间序列相空间重构参数的信息熵优化方法(IEOP),该方法首先使用条件熵表示信息量,建立时间延迟和嵌入维数在相空间中的信息熵优化模型,然后利用遗传算法同时求解两个重构参数,使重构坐标间既保持了良好的独立性又保留了原系统的动力学特征.通过在Lorenz和Mackey-Glass系统上的数值实验,该方法不仅能够确定合适的嵌入维数和时间延迟,而且能在优化的相空间中获得更多的信息,提高了混沌时间序列的预测精度.  相似文献   

10.
基于Takens的相空间延迟坐标重构,研究了用于混沌信号预测的三阶Volterra滤波器的一种乘积耦合近似实现结构,并应用于典型的低维混沌时间序列和具有高维混沌特性的EEG信号的预测.数值研究表明:这种滤波器结构对于低维混沌时间序列的预测精度可以比二阶Volterra滤波器提高103倍,而且能够较好地对一些具有高维混沌特性的EEG信号进行预测 关键词: 混沌 非线性自适应预测 三阶Volterra滤波器 electroencephalography信号  相似文献   

11.
基于模糊模型的混沌时间序列预测   总被引:9,自引:0,他引:9       下载免费PDF全文
王宏伟  马广富 《物理学报》2004,53(10):3293-3297
对于复杂、病态、非线性动态系统,基于模糊集合的模糊模型,利用模糊推理规则描述动态系统的特性,是一种有效方法.讨论了利用模糊建模方法实现非线性系统的建模和预测.首先,利用在线模糊竞争学习方法划分输入变量的模糊输入空间,然后利用卡尔曼滤波算法估计模糊模型的参数.采用该方法对Mackey Glass混沌时间序列进行预测试验,结果表明利用本方法可以在线或者离线能对Mackey Glass混沌时间序列进行准确预测,证明了本方法的有效性. 关键词: 模糊竞争学习 混沌时间序列 卡尔曼滤波  相似文献   

12.
基于递阶模糊聚类的混沌时间序列预测   总被引:5,自引:0,他引:5       下载免费PDF全文
刘福才  孙立萍  梁晓明 《物理学报》2006,55(7):3302-3306
提出一种新的基于递阶模糊聚类系统的模糊建模方法.目的在于通过一系列的步骤优化T-S模糊模型结构,实现非线性系统的建模和预测.首先利用最近邻聚类法初始划分输入空间,得到规则数及初始聚类中心,用模糊C均值算法(FCM)进一步优化聚类中心;然后利用加权最小二乘法估计模糊模型的初始参数,进一步利用带遗忘因子的递推最小二乘法优化结论参数.采用该方法对Mackey-Glass混沌时间序列进行预测实验,结果表明可以对Mackey-Glass混沌时间序列进行准确建模和预测,证明了本方法的有效性. 关键词: 递阶模糊聚类 模糊建模 混沌时间序列 最小二乘  相似文献   

13.
刘福才  张彦柳  陈超 《物理学报》2008,57(5):2784-2790
采用一种基于鲁棒模糊聚类算法的模糊辨识方法,通过引入局部划分关联度因子,增强了系统辨识的抗干扰能力,提高了系统辨识的鲁棒性.首先用最近邻模糊聚类法划分初始输入空间,得到模糊规则数及初始聚类中心;然后用鲁棒模糊聚类算法求解并优化模糊隶属度和聚类中心,建立高精度的T-S模糊模型;最后利用最小二乘法辨识模型的初始结论参数,进一步利用带遗忘因子的递推最小二乘法优化结论参数.采用该方法对Mackey-Glass混沌时间序列进行建模和预测,仿真结果表明利用本方法可以进行准确建模和预测,验证了本方法的鲁棒性、有效性和实 关键词: 最近邻模糊聚类 鲁棒模糊聚类 混沌时间序列 最小二乘法  相似文献   

14.
蔡俊伟  胡寿松  陶洪峰 《物理学报》2007,56(12):6820-6827
提出了一种基于聚类的选择性支持向量机集成预测模型.为提高支持向量机集成的泛化能力,采用自组织映射和K均值聚类算法结合的聚类组合算法,从每簇中选择出精度最高的子支持向量机进行集成,可以保证子支持向量机有较高精度并提高了子支持向量机之间的差异度.该方法能以较小的代价显著提高支持向量机集成的泛化能力.采用该方法对Mackey-Glass混沌时间序列和Lorenz系统生成的混沌时间序列进行预测实验,结果表明可以对混沌时间序列进行准确预测,验证了该方法的有效性. 关键词: 支持向量机 集成 混沌时间序列 聚类  相似文献   

15.
孙建成 《中国物理》2007,16(11):3262-3270
Long-term prediction of chaotic time series is very difficult,for the Chaos restricts predictability.in this paper a new method is studied to model and predict chaotic time series based on minimax probability machine regression (MPMR). Since the positive global Lyapunov exponents lead the errors to increase exponentially in modelling the chaotic time series, a weighted term is introduced to compensate a cost function. Using mean square error (MSE) and absolute error (AE) as a criterion, simulation results show that the proposed method is more effective and accurate for multistep prediction. It can identify the system characteristics quite well and provide a new way to make long-term predictions of the chaotic time series.[第一段]  相似文献   

16.
混沌时间序列的模糊神经网络预测   总被引:13,自引:0,他引:13       下载免费PDF全文
设计一种新型混合模糊神经推理系统,该系统仅从期望输入输出数据集即可达到获取知识、确定模糊初始规则基的目的.再利用神经网络学习能力便不难修改规则库中的模糊规则以及隶属函数和网络权值等参数,这样大大减少了规则匹配过程,加快了推理速度,从而极大程度地提高了系统的自适应能力.用它对Mackey-Glass混沌时间序列进行预测试验,结果表明利用该网络模型无论离线还是在线学习均能对Mackey-Glass混沌时间序列进行准确的预测,证明了该系统的有效性. 关键词: 神经网络模型 模糊逻辑 混合推理系统 混沌时间序列  相似文献   

17.
混沌时间序列全局预测新方法——连分式法   总被引:13,自引:0,他引:13       下载免费PDF全文
张森  肖先赐 《物理学报》2005,54(11):5062-5068
拓展了多项式逼近理论,利用连分式法建立了混沌时间序列非线性全局预测模型,此模型替代混沌序列的动力学方程,实现对其动力学特性分析,达到预测目的. 理论分析和仿真实验表明,连分式法能够有效预测一些混沌序列,该方法预测精度高,并且能得到显式的预测表达式. 关键词: 混沌时间序列 全局预测 连分式  相似文献   

18.
混沌时间序列的支持向量机预测   总被引:43,自引:0,他引:43       下载免费PDF全文
崔万照  朱长纯  保文星  刘君华 《物理学报》2004,53(10):3303-3310
根据混沌动力系统的相空间延迟坐标重构理论,基于支持向量机的强大的非线性映射能力, 建立了混沌时间序列的支持向量机预测模型,并在统计学习理论的基础上采用最小二乘方法来训练预测模型,利用该模型对嵌入维数与模型的均方根误差的关系进行了探讨.最后利用Mackey-Glass时间序列和变参数的Ikeda 时间序列对该模型进行了验证,结果表明,该预测模型能精确地预测混沌时间序列,而且在混沌时间序列的嵌入维数未知时也能取得比较好的预测效果.这一结论预示着支持向量机是一种研究混沌时间序列的有效方法. 关键词: 混沌时间序列 支持向量机 最小二乘法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号