首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

2.
A computationally inexpensive model for tracking inertial particles through a turbulent flow is presented and applied to the turbulent flow through a square duct having a friction Reynolds number of Reτ = 300. Prior to introducing particles into the model, the flow is simulated using a lattice Boltzmann computation, which is allowed to evolve until a steady state turbulent flow is achieved. A snapshot of the flow is then stored, and the trajectories of particles are computed through the flow domain under the influence of this static probability field. Although the flow is not computationally evolving during the particle tracking simulation, the local velocity is obtained stochastically from the local probability function, thus allowing the dynamics of the turbulent flow to be resolved from the point of view of the suspended particles. Particle inertia is modeled by using a relaxation parameter based on the particle Stokes number that allows for a particle velocity history to be incorporated during each time step. Wall deposition rates and deposition patterns are obtained and exhibit a high level of agreement with previously obtained DNS computational results and experimental results for a wide range of particle inertia. These results suggest that accurate particle tracking through complex turbulent flows may be feasible given a suitable probability field, such as one obtained from a lattice Boltzmann simulation. This in turn presents a new paradigm for the rapid acquisition of particle transport statistics without the need for concurrent computations of fluid flow evolution.  相似文献   

3.
IntroductionThecurvedtubeisnotonlycommoninindustry ,butalsoattractsspecialattentionofresearchersinbiomechanicsbecauseaorticarchistheplacewhereatherosclerosishappensmostfrequently[1~ 3].Sincethephysiologicalfeatureofrealbloodvesselisverycomplicated ,theflo…  相似文献   

4.
任意形冒落非均质采空区流场流态数值模拟   总被引:8,自引:2,他引:8  
为研究冒落非均质采空区流场流态及其随边界条件的变化,基于多孔介质渗流方程建立了采空区漏风流态的有限元数值模型,结合现场实例,从宏观上描绘了复杂几何形状采空区的漏风流态(风压分布等值线和流函数线),给出更准确的流态图形分布解.指出用流函数Laplace方程修正函数,对复杂形状和沿多边界方向非均质的采空区流场计算,仍能满足流网正交,其正交性可通过剖分网格精度来控制,得到采空区漏风强度沿固壁边界附近的冒落非压实区相对较大,工作面上下端附近处的漏风强度很大,并直通采空区深部。  相似文献   

5.
Based on numerical simulation, the influence of sedimentation on the convective flow of colloid liquids filling a horizontal cell heated from the sidewall is studied. The set of nonlinear equations is solved by the finite-difference method using explicit schemes. Three convective patterns differing in spatial structure and behavior in time are distinguished. The transition between the patterns is accompanied by a jump in the dimensionless heat flow. Bifurcation diagrams of the convection patterns (the dependences of the heat flow intensity on the Rayleigh number) are given. It is shown that the weak flow of a colloidal suspension exists at a low temperature gradient, the intensity of which is several orders of magnitude lower than the intensity of the flow of a homogeneous liquid under the same parameters. The concentration in the flow with a weak intensity is redistributed in such a way that the density gradient becomes almost vertical, and the heat flow across the layer is absent at the same time. The transition from a weak to a strong one-vortex flow filling the entire cell proceeds abruptly. It is found the threshold of the transition from a weak to intense flow depends on the Boltzmann number characterizing the degree of gravitational stratification. One more flow, namely, a three-vortex flow with an intermediate intensity is generated upon a decrease in the Rayleigh number. Stream-function and concentration fields are manifested for all the observed types of flows.  相似文献   

6.
An analysis of possibility of finding similaarity solutions to the three-dimensional, steady, incompressible, boundary layer equations in rectangular co-ordinates for a power law fluid has been discussed in the literature. In the present paper a similarity analysis is made of the steady, three-dimensional, incompressible, Iaminar, boundary layer flow of all time independent non-Newtonian fluids. The important conclusion drawn from this analysis in that for a non-Newtonian fiuid of any model, a similarity solution exists for the fluid for which shearing stress and rate of strain can be related by an arbitrary continuous function.  相似文献   

7.
In this study, the differential quadrature (DQ) method was used to simulate the eccentric Couette–Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner cylinder and stationary outer cylinder. An approach combining the SIMPLE (semi-implicit method for pressure-linked equations) and DQ discretization on a non-staggered mesh was proposed to solve the time-dependent, three-dimensional incompressible Navier–Stokes equations in the primitive variable form. The eccentric steady Couette–Taylor flow patterns were obtained from the solution of three-dimensional Navier–Stokes equations. The reported numerical results for steady Couette flow were compared with those from Chou [1], and San and Szeri [2]. Very good agreement was achieved. For steady eccentric Taylor vortex flow, detailed flow patterns were obtained and analyzed. The effect of eccentricity on the eccentric Taylor vortex flow pattern was also studied.  相似文献   

8.
This paper presents the use of a parameter continuation method and a test function to solve the steady, axisymmetric incompressible Navier–Stokes equations for spherical Couette flow in a thin gap between two concentric, differentially rotating spheres. The study focuses principally on the prediction of multiple steady flow patterns and the construction of bifurcation diagrams. Linear stability analysis is conducted to determine whether or not the computed steady flow solutions are stable. In the case of a rotating inner sphere and a stationary outer sphere, a new unstable solution branch with two asymmetric vortex pairs is identified near the point of a symmetry-breaking pitchfork bifurcation which occurs at a Reynolds number equal to 789. This solution transforms smoothly into an unstable asymmetric 1-vortex solution as the Reynolds number increases. Another new pair of unstable 2-vortex flow modes whose solution branches are unconnected to previously known branches is calculated by the present two-parameter continuation method. In the case of two rotating spheres, the range of existence in the (Re 1 , Re 2 ) plane of the one and two vortex states, the vortex sizes as a function of both Reynolds numbers are identified. Bifurcation theory is used to discuss the origin of the calculated flow modes. Parameter continuation indicates that the stable states are accompanied by certain unstable states. Received 26 November 2001 and accepted 10 May 2002 Published online 30 October 2002 Communicated by M.Y. Hussaini  相似文献   

9.
Two-dimensional steady symmetric merging flow from two channels into a single one is investigated. The geometry of the configuration has been chosen such that it can be mapped conformally onto a rectangular geometry, thus facilitating the numerical solution procedure for the governing Navier-Stokes equations. Computed velocity profiles and streamline patterns are presented in graphical form. Furthermore, results concerning the inlet length are given.  相似文献   

10.
The solution of the Gromeko problem [1] on unsteady flow of a viscous fluid in a long circular pipe is among the few exact solutions of the Navier-Stokes equations. Its effective solution is obtained only when the longitudinal pressure gradient is given as an arbitrary time function. However, in practice we encounter cases when the flow rate is a known time function. This sort of problem arises, in particular, in rheological experiments using viscometers with a given flow rate. In this case the determination of the pressure gradient from the given flow rate leads in the general case to a very unwieldy expression. Below we present an effective solution of this problem for viscous and elasticoviscous media using the method of solving the inlet flow problem for a steady flow of a viscous fluid in a semi-infinite pipe. It is shown that for the case of a viscous fluid these two problems are actually equivalent.  相似文献   

11.
采用二阶全展开ETG分裂步有限元方法,通过对流动拓扑的详细分析,在排除网格密度影响的基础上,结合二分法给出封闭方腔内空气和水两种典型流体自然对流发生第一次分岔时的临界Rayleigh数。计算结果表明,该方法可用于进行不同Prandtl数条件下方腔内自然对流流动第一次分岔的数值预报,可作为后续各阶分岔及转捩数值预报研究的基础。在相应的条件下,封闭方腔内空气比水更容易发生分岔,且空气的流动结构相对于水表现出一定的倾斜性。  相似文献   

12.
A numerical algorithm to study the boundary‐value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co‐ordinate system. The convergence of the finite‐difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka–Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two‐dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses’ amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40–67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results.  相似文献   

14.
Numerical simulation of air–water slug flows accelerated from steady states with different initial velocities in a micro tube is conducted. It is shown that the liquid film formed between the gas bubble and the wall in an accelerated flow is significantly thinner than that in a steady flow at the same instantaneous capillary number. Specifically, the liquid film thickness is kept almost unchanged just after the onset of acceleration, and then gradually increases and eventually converges to that of an accelerated flow from zero initial velocity. Due to the flow acceleration, the Stokes layer is generated from the wall, and the instant velocity profile can be given by superposition of the Stokes layer and the initial parabolic velocity profile of a steady flow. It is found that the velocity profile inside a liquid slug away from the bubble can be well predicted by the analytical solution of a single-phase flow with acceleration. The change of the velocity profile in an accelerated flow changes the balance between the inertia, surface tension and viscous forces around the meniscus region, and thus the resultant liquid film thickness. By introducing the displacement thickness, the existing correlation for liquid film thickness in a steady flow (Han and Shikazono, 2009) is extended so that it can be applied to a flow with acceleration from an arbitrary initial velocity. It is demonstrated that the proposed correlation can predict liquid film thickness at Re < 4600 within the range of ±10% accuracy.  相似文献   

15.
A finite element algorithm is presented for simultaneous calculation of the steady state, axisymmetric flows and the crystal, melt/crystal and melt/ambient interface shapes in the Czochralski technique for crystal growth from the melt. The analysis is based on mixed Lagrangian finite element approximations to the velocity, temperature and pressure fields and isoparametric approximations to the interface shape. Galerkin's method is used to reduce the problem to a non-linear algebraic set, which is solved by Newton's method. Sample solutions are reported for the thermophysical properties appropriate for silicon, a low-Prandtl-number semiconductor, and for GGG, a high–Prandtl–number oxide material. The algorithm is capable of computing solutions for both materials at realistic values of the Grashof number, and the calculations are convergent with mesh refinement. Flow transitions and interface shapes are calculated as a function of increasing flow intensity and compared for the two material systems. The flow pattern near the melt/gas/crystal tri-junction has the asymptotic form predicted by an inertialess analysis assuming the meniscus and solidification interfaces are fixed.  相似文献   

16.
17.
This paper presents a numerical analysis of the steady boundary-layer flow of a Reiner–Philippoff fluid induced by a 90° stretching wedge in a variable free stream. The governing partial differential equations are converted into a set of two ordinary differential equations by the use of a similarity transformation. The flow is therefore governed by a stretching velocity parameter λ and two non-Newtonian fluid parameters γ and μ0. The variation of the skin friction, as well as other flow characteristics, as a function of the governing parameters is presented graphically and tabulated. A stability analysis has also been performed for this self-similar flow based on linear disturbances to the steady similarity solutions. The results presented in this paper reveal that there are no multiple (dual) solutions for the present problem and the unique solution is stable.  相似文献   

18.
本文提出了光载波条纹图的锁相处理方法,以对光载波条纹图作精确定位。给出了适合于计算机处理的离散递归实现步骤。在非线性模型下对定位精确度作了详细分析。实验结果表明,当暂态影响衰减后,能对条纹图进行精确定位而无稳态误差,对断裂条纹的大范围补偿也取得了较好的效果。  相似文献   

19.
In this paper, a high-order compact finite difference algorithm is established for the stream function-velocity formulation of the two-dimensional steady incompressible Navier-Stokes equations in general curvilinear coordinates. Different from the previous work, not only the stream function and its first-order partial derivatives but also the second-order mixed partial derivative is treated as unknown variable in this work. Numerical examples, including a test problem with an analytical solution, three types of lid-driven cavity flow problems with unusual shapes and steady flow past a circular cylinder as well as an elliptic cylinder with angle of attack, are solved numerically by the newly proposed scheme. For two types of the lid-driven trapezoidal cavity flow, we provide the detailed data using the fine grid sizes, which can be considered the benchmark solutions. The results obtained prove that the present numerical method has the ability to solve the incompressible flow for complex geometry in engineering applications, especially by using a nonorthogonal coordinate transformation, with high accuracy.  相似文献   

20.
In this paper we study the transonic shock in steady compressible flow passing a duct. The flow is a given supersonic one at the entrance of the duct and becomes subsonic across a shock front, which passes through a given point on the wall of the duct. The flow is governed by the three-dimensional steady full Euler system, which is purely hyperbolic ahead of the shock and is of elliptic–hyperbolic composed type behind the shock. The upstream flow is a uniform supersonic one with the addition of a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem of determining the transonic shock and the flow behind the shock is reduced to a free-boundary value problem. In order to solve the free-boundary problem of the elliptic–hyperbolic system one crucial point is to decompose the whole system to a canonical form, in which the elliptic part and the hyperbolic part are separated at the level of the principal part. Due to the complexity of the characteristic varieties for the three-dimensional Euler system the calculus of symbols is employed to complete the decomposition. The new ingredient of our analysis also contains the process of determining the shock front governed by a pair of partial differential equations, which are coupled with the three-dimensional Euler system. The paper is partially supported by National Natural Science Foundation of China 10531020, the National Basic Research Program of China 2006CB805902, and the Doctorial Foundation of National Educational Ministry 20050246001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号