首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor.  相似文献   

2.
A novel amperometric glucose biosensor has been fabricated on the basis of aligned ZnO nanorod film grown on ITO directly. Glucose oxidase immobilized on the surface of ZnO nanorods are very stable with highly catalytic activity during the measurements, Because of the novel properties of ZnO, such as biocompatibility, non-toxicity, chemical stability, electrochemical activities and high isoelectric point, and the protection effect of Nifion membrane cast on the surface of the film. This biosensor displays excellent analytical performance over a wide linear range along with good selectivity. Interference from uric acid and ascorbic acid which usually coexist with glucose in practical samples has been found to be negligible. This method may be used to construct other amperometric biosensors using aligned nanorod/nanowire films.  相似文献   

3.
We constructed the transferred ZnO biosensor and the grown ZnO biosensor by two different nano-ZnO immobilization approaches. And the influence of different assembly processes on the biosensor performance has been systematically investigated and compared. An enhanced sensitivity of the grown ZnO biosensor is found to be 52% higher than that of the transferred ZnO biosensor. Correspondingly, the other properties are also better in the grown ZnO biosensor, including the response time, the detection limit and the linear range. These results are well consistent with the fact that more glucose oxidase is immobilized on the well-aligned ZnO arrays, which have higher specific surface area and more direct electron communication path, in the grown sensor than the randomly distributed and stacked ZnO nanorods in the transferred sensor. The nano-ZnO grown directly has been demonstrated more desirable for enzymatic immobilization and signal transduction in the high performance biosensors.  相似文献   

4.
ZnO nanobundles were fabricated by Sol–Gel route. The as-prepared ZnO nanobundles were characterized by XRD, FE-SEM, TEM and PL. ZnO nanobundles structure are composed of many nanorods of about 80 nm in diameter and 0.6 μm in length. It showed weaker UV emission and stronger green emission. A glucose biosensor was constructed using these ZnO nanobundles as supporting materials for glucose oxidase (GOX) loading by chitosan-assisted cross-linking technique. The biosensor exhibits a high affinity, high sensitivity, and fast response for glucose detection. These results demonstrate that zinc oxide nanostructures have potential applications in biosensors.  相似文献   

5.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

6.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes.  相似文献   

7.
A glucose amperometric biosensor was developed. Glucose oxidase enzyme was immobilized by means of a Nafion membrane on glassy carbon modified with an electrochemically deposited mixed Cu and Pd hexacyanoferrate (CuPdHCF). According to the data provided by X-ray atomic spectroscopy measurements, this Cu- and Pd-based hexacyanoferrate is likely to be a mixture of single CuHCF and PdHCF pure phases. The biosensor performances were evaluated by recording the steady-state currents due to submillimolar additions of glucose to a potassium buffer solution (pH 5.5) and exploiting the electrocatalytic reduction of the enzymatically produced hydrogen peroxide. The CuPdHCF-based biosensor exhibited a sensitivity of 8.1?±?0.6 A M?1 m?2, a limit of detection of 1.4?×?10?5 M, and a linear response range extending between 5?×?10?5 and 4?×?10?4 M, with a dynamic response range up to 4?×?10?3 M glucose. Electrode sensitivity and signal stability resulted more satisfactory as compared to those of a CuHCF-based biosensor fabricated according to the same procedure. The selectivity was investigated through an interference study. The response to easily oxidizable species was found to be low enough to allow glucose determination in biological samples.  相似文献   

8.
A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM?1 cm?2, and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication.
Figure
A schematic diagram for the fabrication of unhybridized TiO2 nanotube arrays glucose biosensor via optimized cross-linking technique.  相似文献   

9.
Sulfonated graphene nanosheet/gold nanoparticle (SGN/Au) hybrid was synthesized by electrostatic self-assembly of anionic SGN and positively charged gold nanoparticles. Due to the well-dispersivity of SGN in aqueous solution and its adequate negative charge, Au nanoparticles were assembled uniformly on graphene surface with high distribution. With the advantages of both graphene and Au nanoparticles, SGN/Au hybrid showed enhanced electrocatalytic activity towards O2 reduction. Furthermore, it provided a conductive and favorable microenvironment for the glucose oxidase (GOD) immobilization and thus promoted its direct electron transfer at the glassy carbon electrode. Based on the consumption of O2 caused by glucose at the interface of GOD electrode modified with SGN/Au hybrid, the modified electrode displayed satisfactory analytical performance, including high sensitivity (14.55 μA mM?1 cm?2), low detection limit (0.2 mM), an acceptable linear range from 2 to 16 mM, and also the prevention from the interference of some species. These results indicated that the prepared SGN/Au hybrid is a promising candidate material for high-performance glucose biosensor.  相似文献   

10.
Encapsulated ZnO nanorod arrays were fabricated using a two-step method; hydrothermal followed by dip-coating. Intensity of X-ray diffraction peaks of ZnO nanorod films increased by encapsulation with ZnO and Fe doped ZnO layer. Encapsulation process increased diameter of the rods in a range of 20–40 nm. The optical studies indicated that the band-gap decreased with increment of the nanorod diameter, and increased with Fe doping in the ZnO layer. The electrical resistance of the samples demonstrated a remarkable reduction due to encapsulation, especially in the sample encapsulated with Fe doped-ZnO layer. The photoresponse behavior of ZnO nanorod films was investigated under different powers of ultraviolet illumination. The photoresponsivity was improved for encapsulated nanorods as compared to bare nanorods.  相似文献   

11.
ZnO nanorod thin films of different thicknesses and CdS quantum dots have been prepared by chemical method. X-ray diffraction pattern reveals that the CdS quantum dot and ZnO nanorods are of hexagonal structure. Field emission scanning electron microscope images show that the diameter of hexagonal shaped ZnO nanorods ranges from 110 to 200 nm and the length of the nanorod vary from 1.3 to 4.7 μm. CdS quantum dots with average size of 4 nm have been deposited onto ZnO nanorod surface using successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with ZnO nanorod has been used as photo-electrode in quantum dot sensitized solar cells. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 1.10 % and is the best efficiency reported so far for this type of solar cells.  相似文献   

12.
Sol–gel spin technique was used to fabricate transparent p–n junction between NiO and ZnO semiconductors. Atomic force microscopy studies indicated that ZnO film had a fibrous structure, while NiO film showed very smooth surface morphology. The optical transmittance of these films was about 75 %. The optical band gaps of ZnO and NiO films were obtained to be 3.25 and 3.89 eV, respectively. The current–voltage characteristics of NiO/ZnO junction showed a good rectifying behavior. The junction parameters such as ideality factor and barrier height were calculated using thermionic emission model. The barrier height and ideality factor values of the diode were obtained to be 0.48 and 2.91 eV, respectively. The variation of photocurrent with wavelength indicates that this device had high efficiency in wavelength range of 450–475 nm.  相似文献   

13.
In this work, firstly methylene blue (MB) was electropolymerized onto pencil graphite electrode (PGE) surface for the electrocatalytic oxidation of NADH. Cyclic voltammograms show that oxidation potential of NADH at Poly-MB/PGE shifted to negative direction about 300 mV compared with bare PGE. These results indicate that Poly-MB/PGE exhibits a good electrocatalytic activity toward NADH oxidation. Then, a glucose biosensor study was performed based on the determination of enzymatically generated NADH by glucose dehydrogenase (GDH) which immobilized onto Poly-MB/PGE using glutaraldehyde cross-linking procedure. The biosensing of glucose in flow injection analysis (FIA) system was performed at GDH/Poly-MB/PGE for the first time. The electrocatalytic oxidation currents of enzymatically produced NADH obtained from FI amperometric current–time curves recorded at + 200 mV and in phosphate buffer solution at pH 7.0 containing 1.0 M KCl were linearly related to the concentration of glucose. Linear calibration plots are obtained in the concentration range from 0.01 to 1.0 mM. The limit of detection (LOD) was found to be 4.0 µM. A fast, sensitive, low-cost and disposable glucose biosensor was constructed in FIA system using GDH/Poly-MB/PGE; therefore, it might provide a new perspective for the fabrication of biosensor of other compounds such as glutamate, lactate and alcohol.  相似文献   

14.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

15.
A highly oriented ZnO nanorod array film was fabricated on glass substrate by combinations of Sol–Gel and hydrothermal. The film exhibits perfect superhydrophobicity with a contact angle of 155° and a glide angle of 4° after being surface modified by fluoroalkylsilane, which is similar with wings’ property and structures of large yellow spots mosquitoes. Interestingly, the ZnO nanorods film were converted from superhydrophobicity into superhydrophilicity under ultraviolet light for 2 h due to the decomposition of fluoroalkyl chain of fluoroalkylsilane and the photosensitivity of ZnO surface. The transition mechanisms of wettability are discussed on the basis of correlated theories.  相似文献   

16.
Herein, we report a non-enzymatic glucose sensor field-effect transistor (FET) based on vertically-oriented zinc oxide nanorods modified with iron oxide (Fe2O3-ZNRs). Compared with ZnO-based non-enzymatic glucose sensors, which show poor sensing performances, modification of ZnO with Fe2O3 dramatically enhances the sensing behavior of the fabricated non-enzymatic FET glucose sensor due to the excellent electrocatalytic nature of Fe2O3. The fabricated non-enzymatic FET sensor showed excellent catalytic activity for glucose detection under optimized conditions with a linear range up to 18 mM, detection limits down to ~ 12 μM, excellent selectivity, good reproducibility and long-term stability. Moreover, the fabricated FET sensor detected glucose in freshly drawn mouse whole blood and serum samples. The developed FET sensor has practical applications in real samples and the solution-based synthesis process is cost effective.  相似文献   

17.
A novel electrochemiluminescence (ECL) biosensor based on platinum nanoflowers (PtNFs)/graphene oxide (GO)/glucose oxidase (GODx) was discovered for glucose detection. PtNFs/GO was synthesized using a nontoxic, rapid, one-pot and template-free method and characterized by transmission electron microscopy (TEM) and high-resolution TEM techniques. The as-prepared PtNFs/GO with clean surface and multiporous structure was used to assemble GODx to form a glucose biosensor. Based on ECL results, the PtNFs/GO/GODx film-modified electrode displayed a high electrocatalytic activity towards the oxidation of glucose, which generated hydrogen peroxide (H2O2) to react with the luminol radicals thus enhanced the luminol ECL. Under the optimized conditions, two linear regions of ECL intensity to glucose concentration were valid in the range from 5 to 80 μmol/L (r?=?0.9957) and 80 to 1,000 μmol/L (r?=?0.9909) with a detection limit (S/N?=?3) of 2.8 μmol/L. In order to verify the reliability, the thus-fabricated biosensor was applied to determine the glucose concentration in glucose injection, glucose functional drink, and blood serum. The results indicated that the proposed biosensor presented good characteristics in terms of high sensitivity and good reproducibility for glucose determination, promising the applicability of this sensor in practical analysis.  相似文献   

18.
《Analytical letters》2012,45(12):1842-1853
A biosensor was fabricated by incorporating laccase in a ZnO sol-gel with chitosan as a matrix for the determination of catechol. The ZnO nanoparticles were characterized by X-ray diffraction and atomic force microscopy. The conductivity of the chitosan/ZnO/glassy carbon electrode film was investigated by alternating current impedance. The biosensor was employed to monitor the reduction of catechol, and the peak current increased linearly with concentration between 1.0 × 10?6 and 1.0 × 10?4 mole per liter with a limit of detection of 2.9 × 10?7 mole per liter. The laccase biosensor exhibited good stability, reproducibility, and some selectivity.  相似文献   

19.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

20.
A mediator-free glucose biosensor, termed a “third-generation biosensor,” was fabricated by immobilizing glucose oxidase (GOD) directly onto an oxidized boron-doped diamond (BDD) electrode. The surface of the oxidized BDD electrode possesses carboxyl groups (as shown by Raman spectra) which covalently cross-link with GOD through glutaraldehyde. Glucose was determined in the absence of a mediator used to transfer electrons between the electrode and enzyme. O2 has no effect on the electron transfer. The effects of experimental variables (applied potential, pH and cross-link time) were investigated in order to optimize the analytical performance of the amperometric detection method. The resulting biosensor exhibited fast amperometric response (less than 5 s) to glucose. The biosensor provided a linear response to glucose over the range 6.67×10−5 to 2×10−3 mol/L, with a detection limit of 2.31×10−5 mol/L. The lifetime, reproducibility and measurement repeatability were evaluated and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号