首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The existing energy situation demands not only the huge energy in a short time but also clean energy. In this regard, an integrated photo-supercapacitor device has been fabricated in which photoelectric conversion and energy storage are achieved simultaneously. A novel carbazole-based dye is synthesized and characterized for photosensitizer. The silver-doped titanium dioxide (Ag-TiO2) is synthesized, and it is used as photoanode material. Different concentrations of tetrabutylammonium iodide (TBAI)-doped polyvinyl alcohol–polyvinylpyrrolidone (PVA-PVP) blend polymer electrolytes are prepared, and their conductivity and dielectric properties were studied. Reduced graphene oxide (r-GO) is synthesized by a one-pot synthesis method and confirmed using Raman spectroscopy for counter electrode material in dye-sensitized solar cell (DSSC) and supercapacitor electrodes. The DSSC having 4% Ag-TiO2–based photoanode showed the highest efficiency of 1.06% (among r-GO counter electrodes) and 2.37% (among platinum counter electrodes). The supercapacitor before integration and after integration exhibits specific capacitance of 1.72 Fg−1 and 1.327 Fg−1, respectively.

Graphical Abstract

  相似文献   

2.
A polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors was prepared for fabricating a quasi-solid-state dye-sensitized solar cell (QS-DSSC). The in situ synthesized Acac-Py-I2 ionic conductors show weaker influence on the liquid electrolyte absorbency of the polymer gel electrolyte than that of Acac-Py-I2 ionic conductors dissolved in liquid electrolyte. Owing to the higher liquid electrolyte absorbency, the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows higher ionic conductivity than that of polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte. QS-DSSC containing the polymer gel electrolyte with in situ synthesized Acac-Py-I2 ionic conductors shows 3.815% energy conversion efficiency, which is 21.6% higher than that of QS-DSSC containing polymer gel electrolyte with Acac-Py-I2 ionic conductors absorbed from liquid electrolyte.  相似文献   

3.
In this work, the influence of 2-mercaptobenzimidazole (2-MCBI) on poly(vinylidinefluoride-co-hexafluoropropylene)/KI/I2 (PVDF-HFP/KI/I2) polymer electrolytes were studied. The pure and different weight percentage ratios (20, 30, 40 and 50%) of 2-MCBI doped PVDF-HFP/KI/I2 electrolytes were prepared by a solution casting technique. The as-prepared polymer electrolyte films were characterized using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffractometer (XRD), alternating current (AC)-impedance analysis. The addition of 2-MCBI with pure PVDF-HFP/KI/I2 was found to increase the ionic conductivity of electrolyte. Among the various additions, 30 wt% 2-MCBI doped PVDF-HFP/KI/I2 showed the highest room temperature ionic conductivity values than the others. The dye-sensitized solar cell (DSSC) fabricated using this optimized polymer electrolyte achieved a high power conversion efficiency of 4.40% than the pure PVDF-HFP/KI/I2 (1.74%) at similar experimental conditions. Thus, the 2-MCBI doped polymer electrolyte has proven to be an effective substitute to the liquid electrolyte in DSSCs.  相似文献   

4.
An ionic liquid polymer gel containing 1-methyl-3-propylimidazolium iodide (MPII) and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) has been employed as quasi-solid-state electrolyte in dye-sensitized nanocrystalline TiO2 solar cells with an overall conversion efficiency of 5.3% at AM 1.5 illumination.  相似文献   

5.
Using poly(acrylonitrile-co-styrene) as polymer host, 1,2-propanediol carbonate, dimethyl carbonate and ethylene carbonate as mixture solvent, N-methyl-quinoline iodide and iodine as the source of I/I3 , a novel polymer gel electrolyte with ionic conductivity of 5.12 × 10−3 S· cm−1 at 25°C was prepared by sol-gel and hydrothermal methods. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell was fabricated. The solar cell possess better long-term stability and light-to-electrical energy conversion efficiency of 4.04% under irradiation of 100 mW· cm−2. The influences of polymer host, solvent, N-methyl-quinoline iodide and temperature on ionic conductivity of the polymer gel electrolyte and the performance of the dye-sensitized solar cell was discussed.  相似文献   

6.
Polymer gel electrolytes based on poly(acrylic acid)-poly(ethylene glycol) (PAA–PEG) hybrid have been prepared and applied to developed quasi-solid-state dye-sensitized solar cells (DSCs). PAA–PEG hybrid was synthesized by polymerization reaction. Quasi-solid-state DSCs were fabricated with synthesized PAA–PEG electrolyte. The effects of alkali iodides LiI, KI, and I2 concentrations on liquid electrolyte absorbency and ionic conductivity of PAA–PEG were investigated. The evolution of the solar cell parameters with polymer gel electrolyte compositions was revealed. DSCs based on PAA–PEG with optimized KI/I2 concentrations showed better performances than those with optimized LiI/I2 concentrations. The electrochemical impedance spectroscopy technique was employed to examine the electron lifetime in the TiO2 electrode and quantify charge transfer resistances at the TiO2/dye/electrolyte interface and the counter electrode in the solar cells based on the PAA–PEG hybrid gels. A maximum conversion efficiency of 4.96% was obtained for DSCs using KI based quasi-solid electrolyte under 100 mW cm−2. Our work suggests that KI can be the promising alkali metal iodide for improving the performance of PAA–PEG hybrid gel DSCs.  相似文献   

7.
8.
An electrospun membrane was prepared from a 16 wt % solution of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) in a mixture of acetone/ N, N-dimethylacetamide (7:3 wt %) at an applied voltage of 12 kV. It was then activated by immersing it in 0.6 M 1-hexyl-2,3-dimethylimidazolium iodide, 0.1 M LiI, 0.05 M I 2, and 0.5 M 4- tert-butylpyridine in ethylene carbonate/propylene carbonate (1:1 wt %) to obtain the corresponding membrane electrolyte with an ionic conductivity of 10 (-5) S cm (-1) at 25 degrees C. On the basis of this electrospun membrane electrolyte, quasi-solid-state dye-sensitized solar cells were fabricated, which showed an open-circuit voltage ( V oc) of 0.76 V, a fill factor of 0.62, and a short-circuit current density ( J sc) of 15.57 mA cm (-2) at an incident light intensity of 100 mW cm (-2). This yields a light-to-electricity conversion efficiency of 7.3%. Moreover, this cell possessed better long-term stability than that fabricated with conventional liquid electrolyte.  相似文献   

9.
Cornstarch derivative (ES), prepared using diethyl sulfate as an etherifying reagent, was blended with castor oil-based polyurethane (PU) prepolymer to obtain a series of semi-interpenetrating polymer network (semi-IPN) materials, named as UES films. Simultaneously, other kinds of semi-IPN (UBS2) were prepared from PU and benzyl starch (BS2) to compare the effects of the substitute groups. The differences in the miscibility and properties of the two series of materials were investigated using attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, dynamic mechanical thermal analysis, ultraviolet-visible spectroscopy, water-sensitivity and tensile testing. The experimental results revealed that UBS2 films exhibit stronger interfacial attraction and better phase mixing than the UES films, as a result of specific interactions between the PU hard segments and BS2 phenyl groups. The optical transmittance, water-resistivity, tensile strength, and elongation at break of the UBS2 films were clearly higher than those of the UES films containing the same concentration of PU. In particular, the miscibility and properties of the UES film with 40 wt.-% ES, were very poor, whereas the semi-IPN films containing 70 wt.-% benzyl starch still had a certain miscibility and good properties. Therefore, the phenyl groups play an important role in the improvement of the miscibility and properties of the semi-IPN materials.  相似文献   

10.
A novel composite polymeric gel comprising room-temperature ionic liquids (1-butyl-3-methyl-imidazolium-hexafluorophosphate, BMImPF6) and heteropolyacids (phosphotungstic acid, PWA) in poly(2-hydroxyethyl methacrylate) matrix was successfully prepared and employed as a quasi-solid state electrolyte in dye-sensitized solar cells (DSSCs). These composite polymer electrolytes offered specific benefits over the ionic liquids and heteropolyacids, which effectively enhanced the ionic conductivity of the composite polymer electrolyte. Unsealed devices employing the composite polymer electrolyte with the 3% content of PWA achieved the solar to electrical energy conversion efficiency of 1.68% under irradiation of 50 mW cm−2 light intensity, increasing by a factor of more than three compared to a DSSC with the blank BMImPF6-based polymer electrolyte without PWA. It is expected that these composite polymer electrolytes are an attractive alternative to previously reported hole transporting materials for the fabrication of the long-term stable quasi-solid state or solid state DSSCs.  相似文献   

11.
Doping the molecular plastic crystal of succinonitrile with solid N-methyl-N-butylpyrrolidinium iodide salt and iodine has produced a highly conductive solid iodide/triiodide conductor. Furthermore, it was employed for a highly efficient, all-solid-state dye-sensitized solar cell.  相似文献   

12.
The effect of polypyrrole (PPy) on the polyvinyl alcohol (PVA)-potassium iodide (KI)-iodine (I2) polymer electrolytes has been investigated and optimized to use in a dye-sensitized solar cell (DSSC). The different weight ratios of PVA: PPy (93: 2, 91: 4, 89: 6, 87: 8, and 85: 10 wt%) polymer electrolytes (PE) were prepared by solution casting. Structural, complex formation and surface roughness of the prepared electrolytes was confirmed by X-ray diffraction, FTIR, and atomic force microscopy (AFM) respectively. Conductivity plots of all polymer films showed increasing trend with temperature and concentration of PPy. The activation energy of the optimized system found to be 0.871 kJ mol?1. UV-visible spectrum was adopted to characterize the absorption spectra of the material revealed that increase in the absorbance with increasing PPy content and shifting the absorbance maximum towards lower energy. The indirect band gap decreased from 3.78 to 2.14 eV and direct band gap decreased from 3.88 to 2.71 eV. The EIS analyses revealed the lower charge transfer resistance of 3.029 Ω cm2 at the interface between CE and PE. The excellent performance was observed in the fabricated DSSCs using PVA (85%)/PPy (10%)/KI (5%)/I2 polymer electrolyte with a short-circuit current density of 11.071 mA cm?2, open-circuit voltage of 0.644 V, fill factor of 0.575, and photovoltaic conversion efficiency of 4.09% under the light intensity of 100 mW cm?2. Hence, the PPy content in polymer electrolyte influences the remarkable performance of low-cost DSSC.  相似文献   

13.
Ionic conductivity and the type of ions are important for the composite polymer electrolyte (CPE) of the dye-sensitized solar cells (DSSCs). Lithium bis(trifluoromethane sulphone)imide (LiTFSI for short) which is easy to dissociate, is added in the composite polymer electrolyte(CPE) as a plasticizer. The LiTFSI acts differently from the conventional LiClO4. LiTFSI changes the conformation of the polymer chain and shows higher ionic conductivity than LiClO4. That contributes to the improvement of the short current density of the DSSC. Furthermore, the DSSCs with LiTFSI modification show higher photovoltage than the LiClO4. The anions of TFSI? prohibit the interface recombination more effectively compared with the LiClO4 as the electrochemical impedance spectroscopy indicated. With the LiTFSI modified electrolyte, the performances of the DSSCs under 1 Sun, AM1.5 are improved and reaches the highest of 4.82% at the LiTFSI:LiI = 0.116:1, much better than the original DSSC(3.6%) and the LiClO4 modified CPE electrolyte DSSC(4.32%).  相似文献   

14.
In the context of protecting of the environment, this work studies the biodegradation of PEG-based polyurethane elastomer films in the presence of the soft rot fungus Chaetomium globosum, determined via the Petri-dish test. Using PEG with high-molecular weight (MW = 1500) as a chain extender led to polyurethane elastomers with lower physical crosslink density and higher swelling rates. The structural modifications in the hard-segment area (CO and N-H peaks) are considerable and were analyzed by FTIR spectroscopy. Biodegradation lowers the final mechanical properties, but increases yield points, especially in the case of polyurethane elastomers crosslinked with castor oil. Polyurethane elastomer samples showed visible degradation proved by the mechanical weakening of the films. Thus, breaking strains decrease from 670-1180% to 500-680% and tensile strengths decreased from 11.5-27.5 MPa to 4-11.5 MPa after 130 days of fungal biodegradation. The changes in the morphology of the polyurethane films surface were analyzed by SEM and have been found to exhibit increasing porous structure and fungal hyphae. The effects of the hard-segment composition of the polyurethane elastomers on the fungal biodegradation behaviour were investigated.  相似文献   

15.
We found that Br-/Br3- is more suitable than an I-/I3- couple in dye-sensitized solar cells in terms of higher open-circuit photovoltage (Voc) production and higher overall energy conversion efficiency (eta) if the dye sensitizer has a more positive potential than that of Br-/Br3-. Under simulated AM1.5 one sun, an eosin Y dye-sensitized solar cell containing 0.4 M LiBr + 0.04 M Br2 electrolyte in acetonitrile yielded a short-circuit photocurrent (Jsc) of 4.63 mA cm(-2), Voc of 0.813 V, and fill factor (FF) of 0.693, corresponding to 2.61% of eta. Under the same conditions except for the electrolyte 0.4 M LiI + 0.04 M I2 in acetonitrile instead, the device produced 1.67% of eta (Jsc = 5.15 mA cm(-2), Voc = 0.451 V, FF = 0.721). Replacement of I-/I3- with Br-/Br3- in eosin Y dye-sensitized solar cells yielded a significant increase in Voc offset by slight decreases in Jsc and FF, leading to an increase in eta by 56%. The significant gain in Voc was attributed to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level of TiO2 and the suppressed charge recombination as well. The rate for charge recombination between bromine and the injected electrons was determined to be first order in bromine.  相似文献   

16.
A series of polyurethane (PU), polyethylene glycol (PEG) and castor oil (CO) (ricin) based foams (PU-PEG, PU-PEG40/CO60, PU-PEG60/CO40 and PU-CO) were prepared and their catalytic activity for removal of methylene blue (MB) dye was evaluated. The prepared foams were characterized by FTIR, SEM and TGA analysis. The foams were porous in nature and the thermal stability was improved with CO incorporation. The PU-CO furnished promising catalytic efficiency and PU-PEG, PU-CO, PU-PEG40/CO60 and PU-PEG60/CO40 removed MB dye completely within 33, 5, 12 and 20 min. The removal of MB dye over foams followed second order kinetic model. The reusability of PU-CO showed stability up to 10 runs. Moreover, the phytotoxicity of the treated dye solution was performed, which reduced significantly after dye solution treatment with prepared foams. The prepared PU-CO also showed biodegradable nature under soil natural conditions. The prepared PU based foams showed excellent catalytic potential for the removal of MB dye along with thermal stability and recyclability, which could be a potential class of materials for the remediation of dyes in effluents.  相似文献   

17.
18.
A stable dye-sensitized solar cell has been obtained based on a new binary ionic liquid electrolyte system containing 1-propyl-3-methylimidazolium iodide and 1-ethyl-3-methylimidazolium tetracyanoborate.  相似文献   

19.
The polyurethanes have been prepared from 2.12 functional ? OH containing castor oil and diphenyl methane diisocyanate under identical experimental conditions with a varying NCO/OH ratio. These polyurethanes were swollen in methyl methacrylate and subsequently interpenetrated by free radical polymerization using benzoyl peroxide and crosslinker ethylene glycol dimethacrylate. A series of interpenetrating polymer network (IPN) PU/PMMA IPNs were obtained as films by a transfer moulding technique. These IPNs were characterized by their resistance to chemical reagents, thermal behavior, and mechanical properties. The morphology was shown by SEM and dielectric properties at different temperatures were measured.  相似文献   

20.
Castor oil is reacted with hexamethylene diisocyanate under different experimental conditions varying the NCO/OH ratio to yield liquid prepolyurethanes (PPU's). All these polyurethanes were interpenetrated with methyl methacrylate (MMA) and a crosslinker EGDM by radical polymerization initiated by benzoyl peroxide. The novel PPU/MMA interpenetrating polymer networks (IPN's) were obtained as tough films by transfer molding. The characterization of these IPN's includes resistance to chemical reagents, thermal behavior (DSC, TGA), and the mechanical properties, namely, tensile strength, modulus of elasticity, elongation at break (%), and hardness. The morphological behavior (SEM) and dielectrical properties such as electrical conductivity, dielectric constant (ε′), dielectric loss (ε″), and loss tangent (tan δ) were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号