首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

The shuttle effect of lithium-sulfur (Li–S) battery is one of the crucial factors restraining its commercial application, because LiPSs (lithium polysulfides) usually leads to poor cycle life and low coulomb efficiency. Some studies have shown that metal oxides can adsorb soluble polysulfides. Herein, CeO2 (cerium-oxide)-doped carbon nanotubes (CeO2@CNTs) were prepared by the hydrothermal method. The polar metal oxide CeO2 enhanced the chemisorption of the cathode to LiPSs and promoted the redox reaction of the cathode through catalysis properties. Meanwhile, the carbon nanotubes (CNTs) enhanced cathode conductivity and achieved more sulfur loading. The strategy could alleviate polysulfide shuttling and accelerate redox kinetics, improving Li–S batteries' electrochemical performances. As a result, the CeO2@CNTs/S composite cathode showed the excellent capacity of 1437.6 mAh g−1 in the current density of 167.5 mA g−1 at 0.1 C, as well as a long-term cyclability with an inferior capacity decay of 0.17% per cycle and a superhigh coulombic efficiency of 100.434% within 300 cycles. The superior electrochemical performance was attributed to the polar adsorption of CeO2 on polysulfides and the excellent conductivity of CNTs.

  相似文献   

2.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

3.
We demonstrate the synthesis of cathode material with nanosized sulfur by a precipitation method making use of the alterable solubility of chitosan (CTS) in aqueous solution. Mesoporous Ketjen Black (KB) and carbon nanotube (CNT) are added as conductive agents to provide the three‐dimensional electric channels. This method can reduce the size of the sulfur particles, thus the nanosized sulfur obtained can fully contact with the conductive agent, which could increase the utilization of sulfur and improve the capacity of Li‐S batteries. Moreover, CTS with abundant hydroxyl and amine groups has strong interaction with polysulfides, which can improve the stability of Li‐S batteries. As a result, the obtained CTS/C‐S cathode containing 76 wt% sulfur delivers an impressively initial discharge specific capacity of 1141.6 mA·h·g–1 at 0.5 C and maintains a capacity of 842.3 mA·h·g–1 after 300 cycles. Our finding paves a way for the rational design of high‐performance sulfur cathodes for advanced Li‐S batteries.  相似文献   

4.
Li–S battery is an attractive electrochemical energy storage system because of its high energy density. However, its commercialization has been greatly affected by the poor cycle life and low rate performance, which is attributed to the dissolution of polysulfides and their shuttle effects. In this study, titanium dioxide particles with a large amount of exposed {001} facets (TDPEF) were prepared by alcohol-thermal method. The as-prepared TDPEF achieved a relatively high specific surface area of 92 m2 g?1 and a pore volume of 0.27 cm g?1. Sulfur was mixed with the TDPEF to form TDPEF/S composite by a melt diffusion process. The TDPEF/S composite exhibits much excellent discharge capacity retention of 80 % after 100 cycles compared with pure sulfur at a high current rate of 0.5 C, and it still has a discharge capacity as high as 530 mAh g?1 even at the current rate of 4 C.  相似文献   

5.
Herein, we demonstrate a safe, inexpensive, and stable cycle-life aqueous rechargeable Li-ion battery system using tavorite LiTiPO4F as anode and Li[Li0.2Co0.3Mn0.5]O2 as cathode in aqueous electrolyte using 2 M Li2SO4. These materials have been synthesized via a simple and an efficient method called RAPET (reaction under autogenic pressure at elevated temperature) method, and for the first time, we have evaluated the electrochemical properties of LiTiPO4F in aqueous electrolyte. Structural and morphological features have been characterized using X-ray diffraction and scanning electron microscopy techniques, and the electrochemical studies have been investigated by using cyclic voltammetry, galvanostatic charge/discharge studies, electrochemical impedance spectroscopic technique, potentiostatic intermittent titration techniques, and galvanostatic intermittent titration techniques. In galvanostatic charge/discharge studies, the capacity, cycle life, and columbic efficiency of LiTiPO4F have been tested in combination with Li [Li0.2Co0.3Mn0.5]O2 cathode. In particular, LiTiPO4F shows capacity of 82 mA h g?1, the capacity retention was maintained 90 % even after the 45th cycle.  相似文献   

6.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

7.
Transition metal oxides have great potential as anode for lithium-ion batteries (LIBs), owing to their high theoretical capacity and low cost. However, the poor cycling stability and electron conductivity have limited the widely expected application of transition metal oxides. In this work, highly single-crystalline Co3O4 cubes with 400 nm in the average side length are successfully synthesized by a facile hydrothermal method. When used as anode for LIBs, the Co3O4 single-crystalline cubes exhibit highly stable and substantial discharge capacities of the amount to 877 mA h g?1 at 200 mA g?1 after 110 cycles with remarkable capacity retention of 98%, and 576 mA h g?1 even at a high rate of 2000 mA g?1. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application to the future development of transition metal oxides anodes. These results suggest that the single-crystalline Co3O4 is a promising electrode material for the high-performance energy storage devices.  相似文献   

8.
Multiwalled carbon nanotube (MWCNT)–vanadium pentoxide (V2O5) nanocomposites have been fabricated using a facile and environmental friendly hydrothermal method without any pretreatment, surfactants, or chelate agents added. The as-annealed nanocomposites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the results indicate that V2O5 nanoparticles grew on MWCNTs. As a cathode material for lithium batteries, it exhibits superior electrochemical performance compare to the pure V2O5 powders. A high specific discharge capacity of 253 mA h g?1 can be obtained for the 15 % MWCNT–V2O5 nanocomposite electrodes, which retains 209 mA h g?1 after 50 cycles. However, the pure V2O5 powder electrodes only possess a specific discharge capacity of 157 mA h g?1 with a capacity retention of 127 mA h g?1 after 50 cycles. Moreover, the MWCNT–V2O5 nanocomposite electrodes show an excellent rate capability with a specific discharge capacity of 180 mA h g?1 at the current rate of 4 C. The enhanced electrochemical performance of the nanocomposites is attributed to the formation of conductive networks by MWCNTs, and large surface areas of V2O5 nanoparticles grew on MWCNTs which stabilizes these nanoparticles against agglomeration.  相似文献   

9.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

10.
The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide (LVP/N-RGO) composite was prepared by a facile one-pot hydrothermal method and evaluated as cathode material for lithium-ion batteries. It is clearly seen that the novel porous structure of the as-prepared LVP/N-RGO significantly facilitates electron transfer and lithium-ion diffusion, as well as markedly restrains the agglomeration of Li3V2(PO4)3 (LVP) nanoparticles. The introduction of N atom also has positive influence on the conductivity of RGO, which improves the kinetics of electrochemical reaction during the charge and discharge cycles. It can be found that the resultant LVP/N-RGO composite exhibits superior rate properties (92 mA h g?1 at 30 C) and outstanding cycle performance (122 mA h g?1 after 300 cycles at 5 C), indicating that nitrogen-doped RGO could be used to improve the electrochemical properties of LVP cathodes for high-power lithium-ion battery application.
Graphical abstract The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide composite with significantly accelerating electron transfer and lithium-ion diffusion exhibits superior rate property and outstanding cycle performance.
  相似文献   

11.
Due to the high specific capacities and environmental benignity, lithium-sulfur (Li-S) batteries have shown fascinating potential to replace the currently dominant Li-ion batteries to power portable electronics and electric vehicles. However, the shuttling effect caused by the dissolution of polysulfides seriously degrades their electrochemical performance. In this paper, Mn2O3 microcubes are fabricated to serve as the sulfur host, on top of which Al2O3 layers of 2 nm in thickness are deposited via atomic layer deposition (ALD) to form Mn2O3/S (MOS) @Al2O3 composite electrodes. The MOS@Al2O3 electrode delivers an excellent initial capacity of 1012.1 mAh g?1 and a capacity retention of 78.6% after 200 cycles at 0.5 C, and its coulombic efficiency reaches nearly 99%, giving rise to much better performance than the neat MOS electrode. These findings demonstrate the double confinement effect of the composite electrode in that both the porous Mn2O3 structure and the atomic Al2O3 layer serve as the spacious host and the protection layer of sulfur active materials, respectively, for significantly improved electrochemical performance of the Li-S battery.  相似文献   

12.
Two modifications of molybdenum trioxide with orthorhombic (α-MoO3) and hexagonal (h-MoO3) crystal structure have been synthesized by a microwave-assisted hydrothermal method, facilitated by formic acid. Characterization by means of X-ray diffraction, scanning electron microscopy, specific surface analysis, and Fourier-transform infrared, Raman, and UV-Vis spectroscopy reveals phase-pure crystalline powder samples of hexagonal h-MoO3 microrods and of α-MoO3 nanobelt bundles, respectively. The electrochemical properties of the MoO3 compounds, studied by cyclic voltammetry and galvanostatic cycling vs. Li/Li+, strongly depend on the structure and the applied potential range. In the range of 1.5–3.5 V, Li+-ions can be reversibly intercalated into the α-MoO3 nanobelts. Utilizing the material in this way as intercalation cathode material yields an initial discharge capacity of 295 mA h g?1 at 100 mA g?1 and comparably moderate capacity fading of 25% between cycles 20 and 100. Extending the potential range to 0.01–3.0 V induces the conversion reaction to Mo, which for both modifications yields high initial capacities of around 1500 mA h g?1 but is associated with much stronger capacity fading.  相似文献   

13.
《中国化学快报》2022,33(8):3909-3915
Lithium–sulfur (Li–S) battery is labeled as a promising high-energy-density battery system, but some inherent drawbacks of sulfur cathode materials using relatively complicated techniques impair the practical applications. Herein, an integrated approach is proposed to fabricate the high-performance rGO/VS4/S cathode composites through a simple one-step solvothermal method, where nano sulfur and VS4 particles are uniformly distributed on the conductive rGO matrix. rGO and sulfiphilic VS4 provide electron transfer skeleton and physical/chemical anchor for soluble lithium polysulfides (LiPS). Meanwhile, VS4 could also act as an electrochemical mediator to efficiently enhance the utilization and reversible conversion of LiPS. Correspondingly, the rGO/VS4/S composites maintain a high reversible capacity of 969 mAh/g at 0.2 C after 100 cycles, with a capacity retention rate of 82.3%. The capacity fade rate could lower to 0.0374% per cycle at 1 C. Moreover, capacity still sustains 795 mAh/g after 100 cycles in the relatively high-sulfur-loading battery (6.5 mg/cm2). Thus, the suggested method in configuring the sulfur-based composites is demonstrated a simple and efficient strategy to construct the high-performance Li–S batteries.  相似文献   

14.
A hollow carbon nanofiber hybrid nanostructure anchored with titanium dioxide (HCNF@TiO2) was prepared as a matrix for effective trapping of sulfur and polysulfides as a cathode material for Li–S batteries. The synthesized composites were characterized and examined by X‐ray diffraction, nitrogen adsorption–desorption measurements, field‐emission scanning electron microscopy, scanning transmission electron microscopy, and electrochemical methods such as galvanostatic charge/discharge, rate performance, and electrochemical impedance spectroscopy tests. The obtained HCNF@TiO2–S composite showed a clear core–shell structure with TiO2 nanoparticles coating the surface of the HCNF and sulfur homogeneously distributed in the coating layer. The HCNF@TiO2–S composite exhibited much better electrochemical performance than the HCNF–S composite, which delivered an initial discharge capacity of 1040 mA h g?1 and maintained 650 mAh g?1 after 200 cycles at a 0.5 C rate. The improvements of electrochemical performances might be attributed to the unique hybrid nanostructure of HCNF@TiO2 and good dispersion of sulfur in the HCNF@TiO2–S composite.  相似文献   

15.
Lithium–sulfur (Li?S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium‐ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity‐fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual‐confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by “wrapping” with graphene (G?TiO2@S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge‐discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene‐wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G?TiO2@S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g?1 over 200 cycles at 0.5 C (1 C=1675 mA g?1) and an excellent rate capability of 675 mA h g?1 at a current rate of 2 C; thus, G?TiO2@S holds great promise as a cathode material for Li?S batteries.  相似文献   

16.
Fe@Fe2O3 core-shell nanowires were synthesized via the reduction of Fe3+ ions by sodium borohydride in an aqueous solution with a subsequent heat treatment to form Fe2O3 shell and employed as a cathode catalyst for non aqueous Li-air batteries. The synthesized core-shell nanowires with an average diameter of 50–100 nm manifest superior catalytic activity for oxygen evolution reaction (OER) in Li-O2 batteries with the charge voltage plateau reduced to ~3.8 V. An outstanding performance of cycling stability was also achieved with a cutoff specific capacity of 1000 milliampere hour per gram over 40 cycles at a current density of 100 mA g?1. The excellent electrochemical properties of Fe@Fe2O3 as an O2 electrode are ascribed to the high surface area of the nanowires’ structure and high electron conductivity. This study indicates that the resulting iron-containing nanostructures are promising catalyst in Li-O2 batteries.  相似文献   

17.
18.
《化学:亚洲杂志》2017,12(24):3128-3134
Lithium‐sulfur (Li‐S) batteries have recently attracted a large amount of attention as promising candidates for next‐generation high‐power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2‐graphitic carbon hollow nanofibers as sulfur hosts for high‐performance lithium‐sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li‐S batteries.  相似文献   

19.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

20.
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density.
Graphical Abstract Average voltage vs. number of cycles for the core–shell and pristine materials at 20 mA g?1 for 10 cycles followed by 90 cycles at 100 mA g?1
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号