首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhong  Xue-Peng  Huang  Yun  Cao  Hai-Jun  Lin  Yuan-Hua  Liu  Bo  Song  A-Min  Chen  Ze-Min  Tang  Shui-Hua  Wang  Ming-Shan  Li  Xing 《Journal of Solid State Electrochemistry》2017,21(3):849-857
Journal of Solid State Electrochemistry - In the present work, the copolymer of poly(methyl methacrylate-maleic anhydride) P(MMA-MAh)-based gel polymer electrolytes (GPEs) with a polyhedral...  相似文献   

2.
Nano-Al2O3 was doped in poly(acrylonitrile-co-methyl methacrylate) (P(AN-co-MMA)), and polyethylene(PE)-supported P(AN-co-MMA)/nano-Al2O3 microporous composite polymer electrolyte (MCPE) was prepared. The performances of the prepared MCPE for lithium ion battery use, including ionic conductivity, electrochemical stability, interfacial compatibility, and cyclic stability, were studied by scanning electron spectroscopy, linear sweep voltammetry, and electrochemical impedance spectroscopy. It is found that the nano-Al2O3 significantly affects the MCPE performances. Compared to the MCPE without any nano-Al2O3, the MCPE with 10 wt.% nano-Al2O3 reaches its best performances. Its ionic conductivity is improved from 2.0 × 10−3 to 3.2 × 10−3 S cm−1, its decomposition potential is enhanced from 5.5 to 5.7 V (vs Li/Li+), and its interfacial resistance on lithium is reduced from 520 to 160 Ω cm2. Thus, the battery performance is improved.  相似文献   

3.
A biodegradable composite polymer membrane is fabricated by synthesizing polyvinylpyrrolidone (PVP) on the matrix of lignin, and then the corresponding gel polymer electrolyte (LP-GPE) is further prepared by absorbing the liquid electrolyte. The morphology, mechanical property, and thermal stability of the composite lignin-PVP membrane and the electrochemical properties of LP-GPE are investigated. The results of the investigation present that the mechanical property of the membrane is remarkable improved (670%) and the composite membrane exhibits a better thermal security. For electrochemical properties, a high ionic conductivity of 2.52 × 10?3 S cm?1 at room temperature, excellent lithium-ion transference number of 0.56, and outstanding electrochemical stability of LP-GPE are confirmed. Moreover, the C-rate performance and capacity retention based on Li/LP-GPE/LiFePO4 cell are superior to that of the commercial Celgard 2730 cell. Consequently, all these results demonstrate that LP-GPE can be applied as a novel electrolyte for lithium ion battery with high-performance, low-cost, and environment-friendly properties.
Graphical abstract ?
  相似文献   

4.
Copolymer, poly(acrylonitrile-co-methyl methacrylate) (P(AN-co-MMA)), was synthesized by solution polymerization with different mole ratios of monomers, acrylonitrile (AN) and methyl methacrylate (MMA). Polyethylene (PE) supported copolymer and gel polymer electrolyte (GPE) were prepared with this copolymer and their performances were characterized with FTIR, TGA, SEM, and electrochemical methods. It is found that the GPE using the PE-supported copolymer with AN to MMA = 4:1 (mole) exhibits an ionic conductivity of 2.06 × 10−3 S cm−1 at room temperature. The copolymer is stable up to 270 °C. The PE-supported copolymer shows a cross-linked porous structure and has 150 wt% of electrolyte uptake. The GPE is compatible with anode and cathode of lithium ion battery at high voltage and its electrochemical window is 5.5 V (vs. Li/Li+). With the application of the PE-supported GPE in lithium ion battery, the battery shows its good rate and initial discharge capacity and cyclic stability.  相似文献   

5.
Liu  Yi  Ma  Xiaoyan  Sun  Kun  Yang  Kaiqi  Chen  Fang 《Journal of Solid State Electrochemistry》2018,22(2):581-590
Journal of Solid State Electrochemistry - As a kind of organic–inorganic hybrid materials with nanocage structure, polyhedral oligomeric silsesquioxane (POSS) has the advantages of good...  相似文献   

6.
The aim of the present work was to perform a preliminary study of the physicochemical properties of hybrid organic–inorganic gel electrolytes for Li-ion batteries based on the PAN/TMS - poly(acrylonitrile)/sulfolane - polymeric matrix and surface-modified precipitated silicas. Modifications were done by means of the so-called dry method using silane U-511 3-methacryloxypropyltrimetoxysilane. Scanning electron microscopy (SEM), noninvasive back scattering method (NIBS), specific surface area (BET), the degree of modification of the silica fillers—Fourier-transform infrared spectroscopy (FT-IR), impedance analysis, and charging/discharging were carried out. It is found that the silica fillers were homogeneously dispersed in the polymeric matrix, which enhanced conductivity and electrochemical stability of porous polymer electrolytes. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by the silane causes an increase in the gel-specific conductivity by about 2 orders of magnitude as compared to gel with unmodified silica.  相似文献   

7.
8.
A novel kind of sandwiched polymer membrane was prepared by coating three layers of poly(vinyl difluoride) (PVDF), poly(methyl methacrylate) (PMMA) and PVDF, separately. Its characteristics were investigated by scanning electron microscopy, FT-IR, X-ray diffraction, and differential thermal analysis. It consists of two phases. The outer PVDF layers are porous, and the inner PMMA layer is solid. Since the PMMA has a good compatibility with the carbonate-based liquid electrolyte, the membrane can easily absorb the electrolyte to form a gelled polymer electrolyte (GPE). As a result, the evaporation peak of the liquid electrolyte is increased to 160 °C. Due to very low evaporation of the liquid electrolyte, LiCoO2 shows good cycling behavior in the range of 4.4–3.0 V when this GPE is used as the separator and polymer electrolyte, and lithium as the counter and reference electrode. This unique sandwiched membrane is promising for application in scale-up lithium ion batteries with high safety and high energy density.  相似文献   

9.
The present study focuses on the preparation and characterization of poly(vinyl alcohol)/poly(vinylidene fluoride) blend polymer electrolyte doped with lithium triflate (LiCF3SO3). Interaction of lithium triflate with the host polymer in the solid polymer electrolyte was studied using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. It was found that 15% salt doped polymer electrolyte possesses the highest ionic conductivity (2.7 × 10–3 S/cm) at 303 K, the higher thermal stability at 175°C. Linear sweep voltammetry results revealed that the film is electrochemically stable up to 3.4 V.  相似文献   

10.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

11.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

12.
Yuan  Ge  Guo  Haijun  Bo  Li  Wang  Mengkun  Zhang  Hairong  Chen  Xinde 《Journal of Solid State Electrochemistry》2023,27(2):455-465
Journal of Solid State Electrochemistry - The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic...  相似文献   

13.
14.
徐志康 《高分子科学》2016,34(12):1423-1435
Dual-asymmetric poly(vinylidene fluoride)(PVDF) separators have been fabricated by thermally induced phase separation with dimethyl sulfone(DMSO2) and glycerol as mixed diluents. The separators have a porous bulk with large interconnected pores(~1.0 μm) and two surfaces with small pores(~30 nm). This dual-asymmetric porous structure endows the separators with higher electrolyte uptake amount and rapider uptake rate, as well as better electrolyte retention ability than the commercialized Celgard 2400. The separators even maintain their dimensional stability up to 160 °C, at which temperature the surface pores close up, leading to a dramatic decrease of air permeability. The electrolyte filled separators also show high ion conductivity(1.72 m S?cm―1) at room temperature. Lithium iron phosphate(Li Fe PO4)/lithium(Li) cells using these separators display superior discharge capacity and better rate performance as compared with those from the commercialized ones. The results provide new insight into the design and development of separators for high-performance lithium ion batteries with enhanced safety.  相似文献   

15.
The role of the lithium ion environment is of fundamental interest regarding transport and conductivity in lithium polymer electrolytes. X-ray crystallography has been used to characterize the lithium environment in completely crystalline poly(ethylene oxide) (PEO) electrolytes, but this approach cannot be used with dilute PEO electrolytes. Here, using solid-state NMR data collected with the rotational-echo double-resonance 13C[7Li] (REDOR) pulse sequence, we have been able to characterize the crystalline microdomains of a PEO-lithium triflate sample with an oxygen/lithium ratio of 20:1. Our data clearly demonstrates that the lithium crystalline microdomains are nearly identical to those of a completely crystalline 3:1 sample, for which the crystal structure is known.  相似文献   

16.
《Solid State Sciences》2007,9(11):1069-1073
A new type of lithium difluoro(oxalate)borate salt was synthesized by solid state reaction method and has been incorporated into polyvinyledenefluoride–hexafluoropropylene (PVdF–HFP) skeleton. Ethylene carbonate (EC) and diethyl carbonate (DEC) mixture was used as plasticizing agent. Sb2O3 nanoparticle was used as the filler in the polymer host to prepare the nanocomposite polymer electrolytes (NCPE) for lithium ion batteries by solution casting technique. All the membranes were subjected to a.c. impedance, mechanical stability and morphological analysis. Among them 5 wt% Sb2O3 having NCPE exhibited enhanced conductivity of 0.298 mS cm−1 at ambient temperature and Young's modulus increased from 1.32 to 2.31 MPa after the addition of Sb2O3. The conductivity enhancement is explained in terms of Vogel–Tamman–Fulcher (VTF) theory.  相似文献   

17.
The addition of optimum cetyl pyridium chloride (CPC)–modified montmorillonite (CM) increases the ionic conductivity of poly(acrylonitrile)‐based electrolytes by roughly two orders of magnitude. Specific interactions between the silicate layer, the nitrile group, and the lithium cation were investigated by FTIR, solid‐state NMR, dielectric analyzer, and alternating current impedance. IR and NMR spectra confirm that the negative charges in the silicate layers alter the ionic charge environment of the PAN‐based electrolyte composites, which have the same function as the polar group in PAN. The optimum CM content to achieve the maximum ionic conductivity is 6 phr. However, untreated montmorillonite leads to insignificant polymer intercalation, the negative charges in the silicate layers fail to appreciably disturb the attractive force of the lithium salt, and the resulting conductivity improvement is also less than that of the CM additives. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2407–2419, 2001  相似文献   

18.
This work presents a photo electrochemical cell based on zinc oxide (ZnO) nanoparticles and poly(acrylic) acid (PAA) doped with sodium iodide (NaI) and iodine (I2) polymer gel electrolyte. The ZnO powders were synthesized by sol–gel storage and sol–gel centrifugation. The ZnO powder synthesized via sol–gel centrifugation showed the optimal structural properties, with largest crystallite sizes of 58 nm, average particles size between 20 and 80 nm and indirect band gap energy of 3.20 eV. The highest conductivity [(8.0 ± 0.1) × 10?2 S cm?1] was obtained for PAA + 0.8 M NaI + 0.02 M I2. This sample achieved the lowest activation energy (0.029 eV) and electrochemical stability at 1.6 V. The ZnO powder synthesized via sol–gel centrifugation and PAA + 0.8 M NaI + 0.02 M I2 was fabricated as a Cu–ZnO/PAA + 0.8 M NaI + 0.02 M I2/C-ITO photo electrochemical cell.  相似文献   

19.
Fine gel fibers were prepared from commercially available poly(acrylonitrile) (PAN) fibers by preoxidation and hydrolysis. C13 NMR and WAX analysis showed the chemical structure of the PAN gel fibers consisted of the planar network structure with pyridine rings and carboxyl groups. The PAN gel fibers showed large elongation in an alkaline solution and contraction in an acidic solution. The degree of swelling in length under an isotonic load was about 80% and the response times in contraction/elongation behavior were about 2 and 4 s, respectively. The ultimate contraction energy and the power were about 188 mJ/cm3 and about 22 mW/cm3, respectively. The maximum contraction force under an isometric state was about 1·2 MPa. The degree of swelling in length, the contraction time and the contraction force were mainly dependent on the aromatization index (AI) in the PAN gel fibers. pH hysteresis loops in the contraction/elongation behavior for the PAN gel fibers stimulated by pH were found.  相似文献   

20.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号