首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An environmentally friendly precursor, adenosine, has been used as a dual source of C and N to synthesize nitrogen-doped carbon catalyst with/without Fe. A hydrothermal carbonization method has been used and water is the carbonization media. The morphology of samples with/without Fe component has been compared by HRTEM, and the result shows that Fe can promote the graphitization of carbon. Further electro-chemical test shows that the oxygen reduction reaction(ORR) catalytic activity of Fe-containing sample(C–Fe N) is much higher than that of the Fe-free sample(C–N). Additionally, the intermediates of C–Fe N formed during each synthetic procedure have been thoroughly characterized by multiple methods,and the function of each procedure has been discussed. The C–Fe N sample exhibits high electro-catalytic stability and superior electro-catalytic activity toward ORR in alkaline media, with its half-wave potential 20 mV lower than that of commercial Pt/C(40 wt%). It is further incorporated into alkaline polymer electrolyte fuel cell(APEFC) as the cathode material and led to a power density of 100 m W/cm~2.  相似文献   

2.
以高含氮量的2-氨基咪唑为氮源,三氯化铁为铁源,高比表面积的KJ600碳黑为载体,通过水热法制得氨基咪唑聚合物前驱体,再经二次高温热处理,制得石墨烯/碳黑复合材料. 透射电镜表征显示该材料为石墨烯纳米片与碳黑颗粒的复合结构. BET表征表明这是一种多孔结构,具有很高的比表面积(882 m2•g-1),这有利于暴露更多活性位点,并促进传质. XRD证实催化剂中存在石墨烯,且石墨烯结构是在第一次热处理过程中形成的. 电化学测试表明,该催化剂在酸性和碱性介质中都具有很高的氧还原电催化活性和低H2O2产率,并且在碱性介质中对甲醇小分子的抗毒化性能明显优于商业Pt/C催化剂,展示出在实际燃料电池系统中的应用潜力.  相似文献   

3.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

4.
质子交换膜燃料电池具有零污染、能量密度高、操作温度低和超静低音等优点,因而广泛应用于新能源汽车动力电源.然而质子交换膜燃料电池阴极氧还原反应(ORR)过程缓慢且复杂,因此需要大量的高性能ORR电催化剂.商品铂基催化剂是目前最为广泛使用的ORR催化剂,然而其高昂的价格阻碍了燃料电池汽车的商业化进程.因此,近年来人们致力于研发高性能的非贵金属ORR催化剂,并成功获得了具有高ORR活性及优异稳定性的催化剂.然而开发贵金属替代催化剂还存在制备过程较为复杂、单体有毒等缺点.核黄素具有成本低廉、无毒、氮含量高等优点,本文将其直接作为碳源和氮源,以无水氯化铁为铁前驱体,通过简单的一步热解法制备了高性能的Fe-N-C催化剂.表征结果表明,合成的催化剂表面由于氮的掺杂导致石墨烯存在较多的缺陷,其比表面积为301 m2 g-1且孔径分布主要位于45 nm处;催化剂由很薄、卷曲的石墨烯片层和一些颗粒组成,其中的碳材料高度石墨化且存在Fe2O3晶体.结合X射线光电子能谱和催化剂的ORR活性,推导出石墨化氮为ORR的主要活性位,铁在ORR反应中也起着重要作用.在氧气饱和的0.1 mol L-1 KOH溶液中,Fe-N-C催化剂的ORR活性达到4.16 mA cm-2,与商品Pt/C催化剂相当(4.46 mA cm-2).采用计时电流法在0.66 V(相对于RHE电位)下运行3 h后,Fe-N-C催化剂电流仅下降了3%,而Pt/C催化剂下降了40%,表明Fe-N-C催化剂与Pt/C催化剂具有相近的ORR活性,但稳定性比Pt/C催化剂更出色.测试结果表明,Fe-N-C催化剂的抗甲醇毒化性能远优于Pt/C催化剂.在酸性介质中,Fe-N-C催化剂的ORR活性比Pt/C催化剂低,但稳定性更高.总之,该Fe-N-C催化剂在碱性介质中有较高的活性和稳定性,在酸性介质中有较高的稳定性.因此,我们采用廉价、无毒的核黄素作为碳氮源,通过简单的一步热解法制备出的Fe-N-C催化剂能较好地满足燃料电池ORR催化剂高性能和低成本的要求,具有很好的应用前景.  相似文献   

5.
Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal–air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel‐iron nitride (Ni3FeN) supporting ordered Fe3Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3FeN mainly contributes to the high activity for the OER while the ordered Fe3Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3FeN‐supported Fe3Pt catalysts show superior catalytic performance to the state‐of‐the‐art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3Pt/Ni3FeN bifunctional catalyst enables Zn–air batteries to achieve a long‐term cycling performance of over 480 h at 10 mA cm−2 with high efficiency. The extraordinarily high performance of the Fe3Pt/Ni3FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.  相似文献   

6.
《Journal of Energy Chemistry》2017,26(6):1187-1195
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·m~(-2) obtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m~(-2)) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs.  相似文献   

7.
Fe/N/C is a promising non‐Pt electrocatalyst for the oxygen reduction reaction (ORR), but its catalytic activity is considerably inferior to that of Pt in acidic medium, the environment of polymer electrolyte membrane fuel cells (PEMFCs). An improved Fe/N/C catalyst (denoted as Fe/N/C‐SCN) derived from Fe(SCN)3, poly‐m‐phenylenediamine, and carbon black is presented. The advantage of using Fe(SCN)3 as iron source is that the obtained catalyst has a high level of S doping and high surface area, and thus exhibits excellent ORR activity (23 A g?1 at 0.80 V) in 0.1 M H2SO4 solution. When the Fe/N/C‐SCN was applied in a PEMFC as cathode catalyst, the maximal power density could exceed 1 W cm?2.  相似文献   

8.
Hollow onion-like graphitic nanoshell structured Fe–N/C nanofiber (Fe–N/CNF) catalyst with porous morphology was prepared by heat treating as-spun polyacrylonitrile/ferrous oxalate composite nanofibers in ammonia atmosphere for the first time. These porous electrocatalyst showed both excellent catalytic activity for oxygen reduction reaction (ORR) and much better stability than commercial Pt/C catalyst in acid solution. The Fe–N/CNF catalysts developed here could be easily fabricated on a large scale and show high potential in proton exchange membrane fuel cells (PEMFCs).  相似文献   

9.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

10.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:2,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

11.
As alternatives to Pt‐based electrocatalysts, the development of nonprecious metal catalysts with high performance in the cathodic oxygen reduction reaction (ORR) is highly desirable for widespread use in fuel cells. Here we report a simple approach for preparing pentabasic (Fe, B, N, S, P)‐doped reduced graphene oxide (rGO) via a two‐step doping method of adding boric acid and ferric chloride to ternary (N, S, P)‐doped rGO (NSPG). Electrochemical investigation of the composites for the ORR revealed that simultaneously doping appropriate amounts of Fe and B into the NSPG produced a synergistic effect that endowed the prepared catalyst with both a positively shifted ORR half‐wave potential and high selectivity for the 4e? reduction of O2. The optimized Fe2B‐NSPG catalyst approached a 4e? process for the ORR with a half‐wave potential (E1/2=0.90 V vs. RHE) even 30 mV higher than that of the commercial Pt/C catalyst in alkaline solution. Furthermore, relative to the Pt/C catalyst, the Fe2B‐NSPG demonstrated superior stability and excellent tolerance of the methanol cross‐over effect. This simple method afforded pentabasic (Fe, B, N, S, P)‐doped rGO as a promising nonprecious metal catalyst used for alkaline fuel cells.  相似文献   

12.
Atomically dispersed Zn–N–C nanomaterials are promising platinum‐free catalysts for the oxygen reduction reaction (ORR). However, the fabrication of Zn–N–C catalysts with a high Zn loading remains a formidable challenge owing to the high volatility of the Zn precursor during high‐temperature annealing. Herein, we report that an atomically dispersed Zn–N–C catalyst with an ultrahigh Zn loading of 9.33 wt % could be successfully prepared by simply adopting a very low annealing rate of 1° min?1. The Zn–N–C catalyst exhibited comparable ORR activity to that of Fe–N–C catalysts, and significantly better ORR stability than Fe–N–C catalysts in both acidic and alkaline media. Further experiments and DFT calculations demonstrated that the Zn–N–C catalyst was less susceptible to protonation than the corresponding Fe–N–C catalyst in an acidic medium. DFT calculations revealed that the Zn–N4 structure is more electrochemically stable than the Fe–N4 structure during the ORR process.  相似文献   

13.
采用离子交换法与热处理相结合的方法,以ZIF67为前驱体,硫代乙酰胺为硫源,制备出硫化钴/多孔碳(CoS/C)复合催化材料,并探讨了硫化时间对复合催化剂的形貌、结构及其氧还原(ORR)性能的影响。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附测定仪、X射线光电子能谱分析(XPS)、拉曼光谱仪(Raman)和旋转圆盘电极(RDE)技术表征催化剂的物理特征和电催化性能。研究结果显示,在碱性条件下该复合催化剂具有与20%(w/w)的商业Pt/C催化剂相媲美的ORR活性,其半波电位仅比Pt/C催化剂低31 mV。随着硫化时间的增加,硫化钴颗粒逐渐增大,催化剂中碳材料的无序程度出现先减小后增大的趋势。在硫化时间为10 min时,复合催化剂在0.1 mol·L-1KOH中表现出良好的电催化活性,且在ORR过程中复合催化剂的平均转移电子数可达到3.72,接近于4,说明氧气在该催化剂表面发生的是四电子转移过程。  相似文献   

14.
Nonprecious-metal-based electrocatalysts with low cost, high activity, and stability are considered as one of the most promising alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR). Herein, an economical and easy-to-fabricate catalyst is developed, that is, Fe/Fe3C embedded in N-doped hollow carbon spheres (Fe/Fe3C/NHCS), which gave the half-wave potential of 0.84 V in 0.1 m KOH, similar to the commercial Pt/C catalyst. Surprisingly, the favorable ORR performance of the as-prepared catalyst was obtained in both acidic and neutral conditions with almost a four-electron pathway and low H2O2 yield, which desirable the development of the proton exchange membrane (PEM) and microbial electrolysis cell (MEC) technology. Additionally, the obtained catalyst demonstrated better long-term stability and high methanol tolerance over a wide range of pH. These features could be mainly attributed to the synergistic effect between Fe/Fe3C and Fe-Nx sites, the hollow structure with mesopores, and the well-dispersed Fe/Fe3C nanoparticles owing to the existence of the abundant hydrophilic groups within the HCS precursor. As such, designing an efficient and cheap ORR catalyst that can operate at alkaline, acidic, and neutral solutions is highly desirable, yet challenging.  相似文献   

15.
Nitrogen‐doped carbon nanosheets (NDCN) with size‐defined mesopores are reported as highly efficient metal‐free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (?0.01 V vs. ?0.02 V) and a high diffusion‐limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm?2) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long‐term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal‐free NDCN catalyst.  相似文献   

16.
王赟  廖卫平  索掌怀 《分子催化》2013,27(4):356-361
采用浸渍还原法制备了炭黑负载Pt及Pt-Fe双金属催化剂,通过X光衍射、扫描电镜及X射线光电子能谱对催化剂进行了表征.利用循环伏安法和计时电流法研究了溶液pH值和Pt/Fe原子比对Pt-Fe/C催化剂的甲醇电催化氧化活性与稳定性的影响.结果显示,当溶液pH值为9.0,Pt/Fe原子比为1∶1时,所得Pt-Fe/C催化剂对甲醇的电催化氧化活性与稳定性明显优于Pt/C催化剂.Fe的引入不仅提高了Pt粒子的分散与电化学活性表面积,而且有利于富Pt表面的形成,从而提高了Pt的有效利用率与催化性能.  相似文献   

17.
杨智  沈亚云  周娥  魏成玲  秦好丽  田娟 《电化学》2020,26(1):130-135
采用热解法制备FeN/C催化剂,考察催化剂前驱体中氮含量对其氧还原活性的影响. 使用X射线衍射、比表面积和孔径分布测试、透射电子显微镜以及热重分析等方法对催化剂的结构、形貌及催化剂前驱体的热性质等进行表征,使用线性扫描伏安法对催化剂的氧还原活性进行测试. 结果表明,以1,10-菲啰啉为氮源,FeCl3为铁源,Black Pearl 2000为载体,催化剂前驱体中1,10-菲啰啉含量为20wt%,Fe含量为1wt %时,热处理制备所得催化剂粒子分布均匀,比表面积为824.48 m 2·g -1,平均孔隙为10.58 nm,表面的氮元素含量为0.31wt%;并具有最好的氧还原催化活性.催化剂前驱体中氮源含量在热解过程中导致催化剂的比表面积、孔径结构及表面氮元素含量的变化是影响催化剂活性的关键因素.  相似文献   

18.
Designing highly efficient non-precious based electrocatalysts for oxygen reduction reaction(ORR) is of significance for the rapid development of metal-air batteries.Herein,a hydrothermal-pyrolysis method is employed to fabricate Fe,N co-doped porous carbon materials as effective ORR electrocatalyst through adopting graphitic carbon nitride(g-C3 N4) as both the self-sacrificial templates and N sources.The gC3 N4 provides a high concentration of unsatur...  相似文献   

19.
将双氰胺、蔗糖与酞菁铁(钴)的混合物通过简单热解法,制备出Co/C-N、Fe/C-N和Fe-Co/C-N纳米复合物。随后利用热还原法,将少量铂沉积于Co/C-N上得到片状碳负载的Co-Pt纳米颗粒Co-Pt/C-N。对样品进行了详细表征,并研究了其在全域pH范围内(酸性、中性与碱性溶液)中的氧还原反应(ORR)活性。结果表明,Co/C-N具有比Fe/C-N和Fe-Co/C-N更高的ORR起始电位和半波电位,并且在碱性和中性溶液中,Co/C-N表现出比Pt/C更强的ORR电活性;在酸性溶液中,铂负载量(质量分数)8.1%的Co-Pt/C-N表现出与Pt/C相近的ORR起始与半波电位。催化剂优异的电活性主要归因于片状碳形成的三维结构、金属纳米颗粒的均匀分布以及丰富的吡啶氮。  相似文献   

20.
《Journal of Energy Chemistry》2017,26(6):1168-1173
Developing non-precious metal catalyst with high activity, good stability and low cost for electrocatalytic oxygen reduction reaction(ORR) is critical for the wide application of energy conversion system. Here, we developed a cost–effective synthetic strategy via silica assistance to obtain a novel Fe_3C/Fe–N_x–C(named as COPBP-PB-Fe-900-SiO_2) catalyst with effective active sites of Fe–N_xand Fe_3C from the rational design two-dimensional covalent organic polymer(COPBP-PB). The nitrogen-rich COP effectively promotes the formation of active Fe–N_x sites. Additionally, the silica not only can effectively suppress the formation of large Fe-based particles in the catalysts, but also increases the degree of carbonization of the catalyst.The as-prepared COPBP-PB-Fe-900-SiO_2 catalyst exhibits high electrocatalytic activity for ORR with a halfwave potential of 0.85 V vs. reversible hydrogen electrode(RHE), showing comparable activity as compared with the commercial Pt/C catalysts in alkaline media. Moreover, this catalyst also shows a high stability with a nearly constant onset potential and half-wave potential after 10,000 cycles. The present work is highly meaningful for developing ORR electrocatalysts toward wide applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号