首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a simple experimental procedure was reported for the electroanalytical determination of selenium (IV) using reduced graphene oxide (rGO) to modify glassy carbon electrode (GCE). The rGO was obtained by reduction of graphene oxide obtained via Hummer’s method. The synthesised rGO was characterised using X-ray diffraction, Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive spectroscopy and transmission Electron microscopy (TEM). GCE was modified with rGO and the electrochemical properties of the bare and modified electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained showed that the modified electrode exhibited more excellent electrochemical properties than the bare GCE. The optimum conditions for detection of selenium in water using square wave anodic stripping voltammetry were as follows: deposition potential ?500 mV, pH 1, pre-concentration time of 240 s and 0.1 M nitric acid was used as supporting electrolyte. The linear regression equation obtained was I (µA) = 0.8432C + 9.2359 and the detection limit was calculated to be 0.85 μg L?1. However, Cu(II) and Cd(II) are the two cations that interfered in the analysis of selenium in water.

The sensor was also applied for real sample water analysis and the result obtained was affirmed with inductively coupled plasma optical emission spectroscopic method. It is believed that our proposed sensor hold promise for practical application.  相似文献   

2.

Nickel oxide (NiO) nanosheets (NSs) deposited on different amounts (0.025, 0.05, 0.1, and 0.2 wt%) of reduced graphene oxide (rGO) are synthesized through hydrothermal method. The NiO NSs on rGO (rGO-NiO) are characterized by using X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) analyses, and electrochemical analysis. Electrocatalytic activity of rGO-NiO nanocomposite modified glassy carbon (GC/rGO-NiO) electrode is examined towards electrocatalytic oxidation of urea in 0.1 M NaOH using cyclic voltammetry and amperometry techniques. The GC/rGO0.1-NiO nanocomposite modified electrode shows enhanced electrocatalytic oxidation of urea than that of other modified electrodes due to the incorporation of NiO NSs on an optimum amount of rGO. The GC/rGO0.1-NiO modified electrode is used for designing electrochemical sensor for urea, and the detection limit is estimated as 0.47 μM using the amperometry technique. The sensitivity of GC/rGO0.1-NiO modified electrode is found to be 2450 μA mM−1 cm−2. In addition to good electroanalytical performance, the present urea sensor displayed good stability and acceptable anti-interference ability in the presence of 20-fold excess concentration of relevant interferents. The GC/rGO0.1-NiO nanocomposite modified electrode is successfully used for the determination of urea in water sample.

Schematic representation of electrocatalytic oxidation of urea at GC/rGO-NiO nanocomposite modified electrode.

  相似文献   

3.
Herein, we report the synthesis of a graphene/polymer composite via a facile and straightforward approach for electromagnetic interference (EMI) shielding applications. Polystyrene (PS) beads were added in graphene oxide (GO)/water solution followed by the addition of hydroiodic acid (HI) for in situ reduction of GO. The composite solution (rGO/PS) was filtered, hot compressed and tested for EMI shielding and dielectric measurements. A 2-mm thick segregated rGO/PS sample with 10 wt% filler loading delivered a high EMI shielding effectiveness (SE) of 29.7 dB and an AC electrical conductivity of 21.8 S m?1, which is well above the commercial requirement for EMI shielding applications. For comparison with the segregated rGO/PS composite, a control polymer composite sample utilizing a thermally reduced graphene oxide was synthesized by following a conventional coagulation approach. The as-synthesized conventional rGO/PS yield an EMI SE of 14.2 dB and electrical conductivity of 12.5 S m?1. The high EMI shielding of segregated rGO/PS is attributed to the better filler-to-filler contact among graphene layers surrounded by PS beads and also to the better reduction and preservation of graphene structure during reduction process that makes the low temperature chemically reduced segregated rGO/PS approach a viable route compared to high temperature thermally reduced conventional rGO/PS approach.  相似文献   

4.
In this paper, an electrochemical sensor was prepared based on the modification of pencil graphite electrode (PGE) by hollow platinum nanoparticles/reduced graphene oxide (HPtNPs/rGO/PGE) for determination of ceftazidime (CFZ). Initially, rGO was electrodeposited on the electrode surface, and then, hollow platinum nanoparticles were placed on the electrode surface via galvanic displacement reaction of Pt(IV) ions with cobalt nanoparticles (CoNPs) that had electrodeposited on the electrode surface. Several significant parameters controlling the performance of the HPtNPs/rGO/PGE were examined and optimized using central composite design as one optimization methodology. The surface morphology and elemental characterization of the bare PGE, rGO/PGE, CoNPs/rGO/PGE, and HPtNPs/rGO/PGE-modified electrodes was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The electrochemical activity of CFZ on resulting modified electrode was investigated by cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV). Adsorptive differential pulse voltammetry indicates that peak current increases linearly with respect to increment in CFZ concentration. CFZ was determined in the linear dynamic range of 5.0 × 10?13 to 1.0 × 10?9 M, and the detection limit was determined as 2.2 × 10?13 M using AdDPV under optimized conditions. The results showed that modified electrode has high selectivity and very high sensitivity. The method was used to determine of CFZ in drug injection and plasma samples.  相似文献   

5.
以氧化石墨烯(GO)、乙酸锌(Zn(CH3COO)2)和硫脲为原料,采用水热法成功制备了还原氧化石墨烯/ZnS(rGO/ZnS)复合材料,并将该材料用作锂离子电池负极。高导电性的 rGO可以为锂离子和电子的传输提供有效的路径,ZnS可以提供较高的理论比容量。rGO/ZnS复合材料在rGO与纳米级高度分散的类球形ZnS颗粒协同作用下展现了较好的嵌锂容量和循环性能。当GO质量浓度为2 mg·mL-1时制备的rGO/ZnS复合材料的倍率性能最好,循环稳定性最佳。  相似文献   

6.
《Electroanalysis》2017,29(4):1014-1021
An electrochemical device was developed for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) using differential pulse voltammetry and glassy carbon (GC) electrodes modified with reduced graphene oxide (rGO) and silver nanoparticle (AgNP) composites, synthesised using both chemical and electrochemical methods. The morphology and electrochemical behaviour of the GC electrodes modified with the rGO/AgNP (chemical method) and rGO‐AgNP (electrochemical method) composites were characterised by scanning electron microscopy and cyclic voltammetry. These techniques demonstrated that, in both methods, the graphene oxide was modified by the AgNPs, and the composite synthesised by the electrochemical method showed a better dispersion of the nanoparticles, resulting in an increase in the surface area compared to the rGO/AgNP composite. The GC/rGO‐AgNP electrode was evaluated and optimised for the simultaneous determination of SMX and TMP, achieving detection limits of 0.6 μmol L−1 for the SMX and 0.4 μmol L−1 for the TMP. The proposed GC/rGO‐AgNP electrochemical device was successfully applied to the simultaneous determination of SMX and TMP in wastewaters samples.  相似文献   

7.
A new biosensor has been developed by a simple electrocodeposition of multiwalled carbon nanotubes (MWCNT), polypyrrole (PPy) and laccase (Lac) on the platinum (Pt) electrode surface. The neurotransmitter biosensor was applied to the detection of dopamine in urine samples using differential pulse voltammetry (DPV). The Pt/MWCNT/PPy/Lac biosensor exhibited a detection limit of 0.14 µM, which is an adequate level for monitoring dopamine in urine. Reproducibility and repeatability values of 2.9 % and 1.7 %, respectively, were obtained compared to the conventional procedure. The proposed biosensor was successfully applied in the determination of dopamine in urine, and the obtained results were in full agreement with those from the HPLC procedure.  相似文献   

8.
We describe here an aptasensor for the ultrasensitive detection of Staphylococcus aureus by electrochemical impedance spectroscopy (EIS). Single-stranded DNA was linked to a nanocomposite prepared from reduced graphene oxide (rGO) and gold nanoparticles (AuNP). Thiolated ssDNA was covalently linked to the AuNPs linked to rGO, and probe DNA was immobilized on the surface of an AuNP-modified glassy carbon electrode to capture and concentrate Staph. aureus. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance. Scanning electron microscopy, cyclic voltammetry and EIS were used to monitor the single steps of the electrode assembly process. The effect was utilized to quantify the bacteria in the concentration range from 10 to 106 cfu mL?1 and with a detection limit of 10 cfu mL?1 (S/N?=?3). The relative standard deviation of Staphylococcus aureus detection was equal to 4.3 % (105 cfu mL?1, n?=?7). In addition to its sensitivity, the biosensor exhibits high selectivity over other pathogens.
Figure
Schematic representation of the GCE surface modification and the detection of S. aureus. Reduced graphene oxide and gold nanoparticle (AuNP) nanocomposite linked by single-stranded DNA was prepared and then used in an aptasensor for the ultrasensitive detection of Staphylococcus aureus through electrochemical impedance spectroscopy. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance.  相似文献   

9.
The graphite oxide (GO) was prepared from expandable graphite by the pressurized oxidation method, and samples were characterized using XRD, UV–Vis, and TEM. GO is reduced in situ emulsion using hydrazine to achieve reduced graphene oxide/waterborne polyurethane (rGO/WPU) nanocomposites. The effect of rGO content on the stability, fracture morphologies, mechanical performance, thermal degradation, and flame-retardant properties of rGO/WPU composites was investigated by zeta potential analyzer, TEM, SEM, universal testing machine, TG, and Cone Calorimeter. The results of zeta potential, TEM, and SEM analysis indicate that rGO has a good stability and dispersibility in rGO/WPU nanocomposites. The results of mechanical tests showed that the mechanical properties of rGO/WPU nanocomposites increased consistently with increasing rGO content up to 2 mass%, and TG showed that the thermostability of rGO/WPU nanocomposites decreased slightly compared to pure WPU, but carbon residue increased from 0.99 to 1.99 % when the mass fraction of rGO in WPU is 2 %. Cone Calorimeter test indicated that the flame-retardant and smoke suppression properties of rGO/WPU composites showed significant improvement compared to the WPU alone. When the mass fraction of rGO is 1 %, the total smoke release and smoke factor decreased by 25 and 38 %, respectively, compared to those of pure WPU.  相似文献   

10.
We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers.
Figure
A simple and sensitive fluorescent assay for oxytetracycline detection based on the different interaction intensity of fluorescein-labeled long-chain aptamer, G-quadruplex-OTC complex with reduced graphene oxide was designed.  相似文献   

11.

A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was dropcast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM−1∙cm−2) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum.

A highly sensitive nonenzymatic electrochemical sensor was fabricated using a Pd-CuO composite with reduced graphene oxide. The sensor has a wide detection range and was used to sense glucose in blood serum

  相似文献   

12.
Here we report a facile approach to synthesize a novel nanostructured thin film comprising Cu nanoparticles (NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE) via the direct electrochemical reduction of a mixture of cupper and graphene oxide (GO) precursors. The effect of the applied potential on the electrochemical reduction of CO2 was investigated using linear sweep voltammetric (LSV) and chronoamperometric (CA) techniques. Carbon monoxide and formate were found as the main products based on our GC and HPLC analysis. The electrochemical reduction of CO2 at the Cu/rGO thin film was further studied using in situ ATR-FTIR spectroscopy to identify the liquid product formed at different applied cathodic potentials. Our experimental measurements have shown that the nanostructured Cu/rGO thin film exhibits an excellent stability and superb catalytic activity for the electrochemical reduction of CO2 in an aqueous solution with a high current efficiency of 69.4% at − 0.6 V vs. RHE, promising for the efficient electrochemical conversion of CO2 to valuable products.  相似文献   

13.
Chen  Ningning  Cheng  Yuxiao  Li  Chen  Zhang  Cuiling  Zhao  Kai  Xian  Yuezhong 《Mikrochimica acta》2015,182(11):1967-1975

We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials.

A simple electrochemical sensor based on gold nanoparticles decorated reduced graphene oxide was developed for highly sensitive measurement of melamine in food contact materials.

  相似文献   

14.
In the present study, a nanocomposite consisting of magnetic reduced graphene oxide decorated with thioglycolic-acid-capped CdTe quantum dots (TGA/CdTe QDs/Fe3O4/rGO) was synthesised using simple ‘hydrothermal method’ and applied as a nanosorbent for extraction and preconcentration of cerium (Ce)(III) from aqueous solutions prior to inductively coupled plasma-optical emission spectroscopy detection. Under the optimised extraction conditions, the calibration graph for Ce(III) was linear in a concentration range of 0.1–511.0 μg L?1 with a correlation coefficient of 0.9986. A detection limit of 0.1 μg L?1 Ce(III) with an enrichment factor of 125 was obtained. Precisions, expressed as relative standard deviation for single-sorbent repeatability and sorbent-to-sorbent reproducibility, were 3.6% and 9.1% (n = 5), respectively. Finally, spiked sea, mineral and tap waters were analysed to evaluate the performance of the proposed method. The high recoveries indicated that the suggested protocol was acceptable for determination of Ce(III) ions in the water samples. The use of QDs and study of their ability for preconcentration of metal ions is an important achievement towards designing novel adsorbents with high efficiency.  相似文献   

15.
The interactions of zopiclone with electrochemically reduced graphene oxide (rGO) modified electrode were examined. A comparison of GC/rGO and glassy carbon electrode (GC) by electrochemical impedance spectroscopy and scanning electrochemical microscopy (SECM) shows that the modified surface is much less conductive than GC. The role of rGO is to act as a site of specific adsorption of the analyte. Molecular dynamics showed that the monoanionic form of zopiclone presents more interactions with defects of rGO. The analytical methodology allowed obtaining a linearity of 10–130 μg L−1, with a limit of detection of 2.14 μg L−1 using SWAdSV at pH 10.0.  相似文献   

16.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

17.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

18.
We have demonstrated electrochemical detection of reduced graphene oxide (rGO) nanoparticles on an ultramicroelectrode (UME) in aqueous solution using rGO collision events. The collision phenomena are detected by monitoring a current–time transient. To attract the rGO to the UME surface, a positive electric field was developed near the UME using a redox reaction. As model systems, ferrocenemethanol and ferrocyanide oxidation reactions were adopted. Amperometric current measurements showed a staircase current response after attachment of rGO on the UME surface. The magnitude of the staircase current is given by the stepwise increase in current, which can provide insight into the size distribution of the rGO colliding with the UME. In the presence of higher concentrations of rGO, multiple collision events happened sequentially on the UME. In this case, an increasing current trend, rather than a single staircase current, was observed. The overall current increment for a given time is a measure of the concentration of rGO in solution. By using this method, charged conductive materials in an aqueous solution can be sensitively detected and/or accumulated.  相似文献   

19.
A fluorometric patulin (PAT) assay is presented that is based on the use of magnetic reduced graphene oxide (rGO) and DNase I. The fluorescence of the PAT aptamer labelled with 6-carboxyfluorescein (FAM) is quenched by magnetized reduced graphene oxide (rGO-Fe3O4) due to fluorescence resonance energy transfer (FRET). However, in the presence of PAT, the labelled aptamer is stripped off from rGO-Fe3O4. The rGO-Fe3O4 is then magnetically separated so that the fluorescence of free labelled PAT aptamer is restored. DNase I cannot hydrolyze the aptamer on rGO-Fe3O4, but it can cleave the free aptamer-PAT complex. This will release FAM and PAT which can undergo a number of additional cycles to trigger the cleavage of abundant aptamer. Recycling of DNase I-assisted target therefore leads to a strong amplification of fluorescence and consequently to an assay with low limit of detection. The detection limit for PAT is as low as 0.28 μg L?1 which is about 13 times lower than that without using DNase I. The method offers a new approach towards rapid, sensitive and selective detection based on an aptamer. Conceivably, it has a wide scope in that it may be applied to numerous other analytes if appropriate aptamers are available.
Abstract Schematic of a fluorometric assay based on the use of magnetic graphene oxide and DNase I. It was applied to the determination of patulin. DNase I was introduced for recycling amplification. The detection limit is about 13 times lower than that without using DNase I. Figure a contains poor quality of text in image. Otherwise, please provide replacement figure file.Thank you. I will provide the figure file.
  相似文献   

20.
The simultaneous deposition of rGO and gold nano structures has been achieved by electrodeposition from mixed solutions containing graphene oxide(GO)and a gold precursor.Scanning electron microscope(SEM),Raman spectroscopy and atomic force microscopy(AFM)have been employed to reveal the morphology,uniformity and practical stability of the nanocomposite films on the indium tin oxide(ITO)substrate.The AFM data showed heights of tens of nanometers of the nanocomposite,suggesting that multilayers of rGO with gold nanoparticles had been formed as a result of the electrochemical co-deposition.Differential pulse voltammetry(DPV),as a widely used analytical technique,has been carried out on the rGO-Au/ITO electrode for the quantitative detection of dopamine(DA).The detection limit(S/N=3)for the determination of DA was evaluated as 0.6μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号