首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gold nanoflowers and overoxidized polypyrrole modified carbon fiber microelectrode (OPPy/Au NFs/CFME) was fabricated using electroless deposition and electrochemical method for highly selective and sensitive detection of 5-HT.  相似文献   

2.
《中国化学快报》2019,30(9):1643-1646
A highly selective and sensitive electrochemical method was developed for the detection of serotonin (5-hydroxytryptamine, 5-HT) at gold nanoflowers (Au NFs) and overoxidized polypyrrole (OPPy) modified carbon fiber microelectrode (CFME). Carbon fiber was firstly modified with gold nanoflowers using electroless deposition method, and then modified with overoxidized polypyrrole using electrochemical polymerization and overoxidization to obtain OPPy/Au NFs/CFME. The obtained OPPy/Au NFs/CFME was characterized by field emission scanning electron microscopy and electrochemical techniques. It was found that the OPPy/Au NFs/CFME showed good sensitivity for the detection of 5-HT in the range of 10 nmol/L − 7.0 μmol/L with detection limit of 2.3 nmol/L, and negligible interferences from ascorbic acid, 5-hydroxyindole acetic acid and uric acid. The OPPy/Au NFs/CFME was successfully applied to the detection of 5-HT in human serum samples with good recovery. The work demonstrates that the electrochemical method, incorporating signal amplification of Au NFs with higher cation selection of OPPy, provides a promising tool for the detection of 5-HT in biological systems  相似文献   

3.
《Electroanalysis》2017,29(12):2689-2697
Stable and well dispersed nickel nanoparticles (NiNPs) were fabricated and embedded in a novel polymer sulfonate and benzimidazole functionalized poly (arylene ether ketone) (S‐BI‐PAEK) film. After drop‐casting the mixed solution of S‐BI‐PAEK and NiSO4 on glassy carbon electrode (GCE) surface, the uniformly distributed NiNPs were formed and stably embedded in S‐BI‐PAEK film by in‐situ electrochemical reduction method. The embedment and well dispersity of NiNPs in S‐BI‐PAEK film was probably attributed to the strong chelation of sulfonate and benzimidazole functional groups contained in S‐BI‐PAEK toward Ni2+ ions, as well as the transferability of Ni2+ ions in S‐BI‐PAEK film. The NiNPs/S‐BI‐PAEK composite film was characterized by scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It exhibited good electrocatalytic activity toward glucose oxidation in 0.1 mol L−1 NaOH solution with high stability. The NiNPs/S‐BI‐PAEK/GCE showed a fast amperometric response with a wide linear range from 1 μM to 4 mM and a low detection limit of 200 nmol L−1 (S/N=3) for the determination of glucose by amperometry at a potential of 0.55 V. Finally it was successfully employed to determine glucose in human serum. Therefore, the novel fabrication method of nickel nanoparticles was promising for the future development of non‐enzymatic glucose sensor.  相似文献   

4.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

5.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

6.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   

7.
In this paper, self-assembled Prussian blue nanocubic particles on nanoporous glassy carbon was developed. The morphology of the PBNP-modified porous glassy carbon was characterized by scanning electron microscopy. The PBNP-GCE-red film-modified electrode was used for the sensitive detection of hydrogen peroxide. The electrochemical behavior of the resulting sensor was investigated using cyclic voltammetry and chronoamperometry. The value of α, k cat, and D was calculated as 0.35, 1.7 × 105 cm3 mol?1 s?1, and 2.6 × 10?5 cm2 s?1, respectively. The calibration curve for hydrogen peroxide determination was linear over 0–600 μM with a detection limit (S/N = 3) of 0.51 μM.  相似文献   

8.
The self-sustaining hybrid electrode was prepared via chemical polymerization of aniline in acid medium containing dispersed carbon nanotubes (CNT), using carbon fiber (CF) as conducting substrate. The ternary composites called PAni/CNT/CF were characterized in order to evaluate their morphologies, structures, and thermal properties. The influence of the polyaniline (PAni) layer in the ternary composite properties was studied considering different deposition times on CF samples (30, 60, and 90 min). The ternary composite morphologies were observed by scanning electron microscopy while thermal structural analyses were obtained using thermogravimetric measurements. The structural features were analyzed by Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). The possible interactions between PAni and CNT were discussed on the basis of Raman and FTIR spectra. These spectroscopic analyses also confirmed that the PAni present in the composite is in the emeraldine (ES) salt form. Furthermore, the ternary composites were also evaluated by electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) techniques. The results showed good charge storage capacity for ternary composites, in particular, for PAni/CNT/CF obtained with 90 min of deposition time, which exhibited specific capacitance of around 500 F g?1. Therefore, this electrode was selected to build a prototype of type I supercapacitor. This device presented specific capacitance of around 143 F g?1 after 3200 charge/discharge cycles.  相似文献   

9.
《Analytical letters》2012,45(8):1241-1254
A novel electrochemical immunosensor was prepared for the detection of the hepatitis C virus non-structural 5A protein. A glassy carbon electrode was modified with an Au-MoO3/Chitosan nanocomposite that warranted good conductivity and biocompatibility. Mesoporous silica with a large specific surface served as a nanocarrier for horseradish peroxidase and the polyclonal antibody as the reporter probe. The immunosensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Following the sandwich-type immunoreaction, horseradish peroxidase was efficiently captured on the surface of the electrode to catalyze the decomposition of hydrogen peroxide. The analytical signal was obtained as an amperometric i-t curve (chronoamperometry). The assay reported here had a wide detection range (1 ng mL?1 ?50 µg mL?1) and detection limit as low as 1 ng mL?1 of hepatitis C virus non-structural 5A protein. The electrochemical biosensor experiments showed excellent reproducibility, high selectivity, and outstanding stability for the determination of hepatitis C virus non-structural 5A protein, and it was successfully applied to the detection of the analyte in real serum samples.  相似文献   

10.
A highly sensitive electrochemical sensor for determination of L-cysteine (CySH) is presented. It is based on vertically aligned multiwalled carbon nanotubes modified with Pt nanoparticles by magnetron sputtering deposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive. The electrochemistry of CySH was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The mechanism for the electrochemical reaction of CySH at the modified electrode at different pH values is discussed. The electrode exhibits a higher electrocatalytic activity towards the oxidation of CySH than comparable other electrodes. It displays a linear dependence (R 2?=?0.9980) on the concentration of CySH in the range between 1 and 500 μM and at an applied potential of +0.45 V, a remarkably low detection limit of 0.5 μM (S/N?=?3), and an outstandingly high sensitivity of 1.42?×?103 μA?mM?1?cm?2, which is the highest value ever reported. The electrode also is highly inert towards other amino acids, creatinine and urea. The sensor was applied to the determination of CySH in urine with satisfactory recovery, thus demonstrating its potential for practical applications.
Figure
Pt nanoparticles on carbon nanotubes by sputtering deposition show high performance for L-cysteine sensing  相似文献   

11.
Shi  Libo  Niu  Xiangheng  Liu  Tingting  Zhao  Hongli  Lan  Minbo 《Mikrochimica acta》2015,182(15):2485-2493

We have synthesized nitrogen-doped graphene nanoribbons (N-GrNRs) by unzipping multi-walled carbon nanotubes (CNTs) under strongly oxidizing conditions and subsequent doping with nitrogen by a low-temperature hydrothermal method. The N-GNRs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy, and assembled on a disposable screen-printed carbon electrode to give a sensor for H2O2 that was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and chronoamperometry. The nano-modified electrode displays enhanced electron transfer ability, and has a large active surface and a large number of catalytically active sites that originate from the presence of nitrogen atoms. This results in a catalytic activity towards H2O2 reduction at near-neutral pH values that is distinctly improved compared to electrodes modified with CNTs or unzipped (non-doped) CNTs only. At a working potential of −0.4 V (vs. Ag/AgCl), the amperometric responses to H2O2 cover the 5 to 2785 μM concentration range, with a limit of detection as low as 1.72 μM. This enzyme-free electrochemical sensor exhibits outstanding selectivity and long-term stability for H2O2 detection.

Nitrogen-doped graphene nanoribbons (N-GrNRs) were expediently synthesized for highly sensitive and selective detection of H2O2.

  相似文献   

12.
The carbon nanotubes (CNTs) assisted strategy has been proposed for insulin sensing and insulin proteolysis analysis. Experiments demonstrated that this strategy could be used for trace insulin determination with a low detection limit 7.75 ng mL−1 (S/N = 3) and a detection range from 20 ng mL−1 to 400 ng mL−1. Both biocompatibility and intrinsic conductivity of pristine CNTs enabled them to act an excellent biosensing platform for the realization of direct electrochemistry and electrocatalysis of insulin. Compared with the present methods, the proposed strategy could realize the trace insulin detection without electrode modifications. It is more convenient and simpler than those based on the chemically modified electrodes. This method also made the CNTs as the indicator for insulin proteolysis analysis so that the biological process could be studied by electron microscope, electrochemical methods and digital camera. CNTs obtained after the proteolysis showed the same capabilities as the pristine ones in electrochemical signal enhancement and could participate in the bio-circle repeatedly.  相似文献   

13.
The electrochemical hydrogen storage properties of Ni-supported multi-walled carbon nanotube (Ni/MWCNT) electrodes were investigated using charge/discharge (C&D) and cyclic voltammetry (CV) techniques. Nickel NPs were deposited on the MWCNT surface, which was first chemically oxidized by H2SO4 and HNO3 (3:1, v/v). Hydrogen storage was carried out by using the Ni/MWCNT electrode as the working electrode in the electrochemical cell. A set of various current densities were applied to the cell to produce (C&D) cycles, and it became optimum corresponding to 1.5 mA current. According to the electrochemical test results, the highest electrochemical discharge capacity of 1625 mAh g?1 was obtained for the electrode with ratio of 4:1 (MWCNTs to Ni) in the initial cycle, which corresponded to 6.07 wt% H2. The storage capacity was increased and reached to 4909 mAh g?1 (18.34 wt% H2) after 20 cycles, and the electrode maintained the specific capacity as cycling continued. Thus, the Ni/MWCNT electrode displays an excellent cycle stability and a high capacity reversibility. CV measurements also showed that the electrochemical adsorption and desorption amount of hydrogen was increased by Ni loading onto the CNTs and indicated that the electrochemical hydrogen adsorption of the electrode has an activated period.  相似文献   

14.
Tang L  Zhu Y  Yang X  Li C 《Analytica chimica acta》2007,597(1):145-150
An enhanced amperometric biosensor based on incorporating one kind of unique nanobiocomposite as dopant within an electropolymerized polypyrrole film has been investigated. The nanobiocomposite was synthesized by self-assembling glutamate dehydrogenase (GLDH) and poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) onto multiwall carbon nanotubes (CNTs). ζ-Potentials and high-resolution transmission electron microscopy (HRTEM) confirmed the uniform growth of the layer-by-layer nanostructures onto the carboxyl-functionalized CNTs. The size of Pt nanoparticles is approximately 3 nm. The (GLDH/Pt-DENs)n/CNTs/Ppy hybrid film was obtained by electropolymerization of pyrrole onto glassy carbon electrodes and characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and other electrochemical measurements. All methods indicated that the (GLDH/Pt-DENs)n/CNTs nanobiocomposites were entrapped within the porous polypyrrole film and resulted in a hybrid film that showed a high electrocatalytic ability toward the oxidation of glutamate at a potential 0.2 V versus Ag/AgCl. The biosensor shows performance characteristics with high sensitivity (51.48 μA mM−1), rapid response (within 3 s), low detection limit (about 10 nM), low level of interference and excellent reproducibility and stability.  相似文献   

15.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

16.
Carbon nanotube electrodes were fabricated using powder microelectrode method, and the carbon nanotube powder microelectrodes (CNTPMEs) were characterized by the electro-oxidation and electro-reduction of nitrite. It was found that the kinetics of oxidation and reduction were greatly improved at CNTs compared with that at conventional graphite, indicating that CNTs could catalyze the electrochemical process of nitrite. The kinetic parameters of these process at CNTs were calculated, i.e. k was 0.593 cm s−1, and (1-α)nα was 0.501±0.018 for the nitrite oxidation. This CNTPME was also used as a nitrite carbon nanotube sensor, and the results showed that the detection limit was 8 μM.  相似文献   

17.
Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.  相似文献   

18.
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA)  相似文献   

19.
《Analytical letters》2012,45(7):1117-1131
A molecularly imprinted electrochemical sensor was fabricated based on a gold electrode modified by chitosan-multiwalled carbon nanotube composite (CS-MWCNTs) multilayer films and gold nanoparticles (AuNPs) for convenient and sensitive determination of oxytetracycline (OTC). The multilayer of CS-MWCNTs composites and AuNPs were used to augment electronic transmission and sensitivity. The molecularly imprinted polymers (MIPs) were synthesized using OTC as the template molecule and o-phenylenediamine (OPD) as the functional monomer. They were modified on a gold electrode by electropolymerization. The electrochemical behavior of OTC at the imprinted sensor was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), and amperometry. The molecularly imprinted sensor showed high selectivity and excellent stability toward OTC. The linear range was from 3.0 × 10?8 to 8.0 × 10?5 mol/L, with a limit of detection (LOD) of 2.7 × 10?8 mol/L (S/N = 3). The developed sensor showed good recovery in spiked samples analysis.  相似文献   

20.
In this paper, a novel polyaniline (PANI) nanofibers/ionic liquid-functionalized carbon nanotubes (IL-CNTs) composite-modified electrode was prepared, and its application on electrocatalytic oxidation of guanine of sequence-specific DNA was investigated. The surface morphology and the related electrochemical behaviors of the PANI/IL-CNTs composite film were characterized with scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry, respectively. The PANI/IL-CNTs composite showed a good response current toward the direct electrooxidation of ssDNA due to the synergistic effect between PANI nanofibers and IL-CNTs. Based on this, it was adopted as an excellent sensing platform for highly sensitive determination of guanine. The detection limit was 3.1 × 10?9 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号