首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Dispersive liquid–liquid microextraction was combined with acetonitrile stacking in capillary electrophoresis for the identification of three selective serotonin reuptake inhibitors (citalopram, fluoxetine, and fluvoxamine) in human fluids such as urine and plasma. Parameters that affect the extraction and stacking efficiency, such as the type and volume of the extraction and disperser solvent, extraction time, salt addition for dispersive liquid–liquid microextraction, and sample matrices, pH, and concentration of the separation buffer for stacking, were investigated and optimized. Under optimum conditions, the enrichment factors were in the range of 1195–1441. Limits of detection ranged from 1.4 to 1.7 nM for the target analytes. Calibration graphs displayed satisfied linearity with R2 greater than or equal to 0.9978, and relative standard deviations of the peak area analysis were in the range of 2.9–5.0% (n = 3). The recoveries of all tricyclic antidepressant drugs from urine and plasma were in the range of 77–117 and 79–106%, respectively. The findings of this study show that dispersive liquid–liquid microextraction acetonitrile‐stacking capillary electrophoresis is a rapid and convenient method for identifying tricyclic antidepressant drugs in urine and plasma.  相似文献   

2.
Summary A method is described for the determination of shortchain aliphatic amines in ambient air based on impinger sampling in dilute H2SO4, selective enrichment across a PTFE gas membrane and quantification by gas chromatography. The enrichment step is carried out in a flow system directly connected to the chromatograph. The separation is performed on a packed column with nitrogen selective detection. The enrichment per sample volume was in the range 7.3 to 8.2 mL–1 for C1–C6 amines. Detection limits were ca 3–10 nM with enrichment of a 2.9 mL liquid sample. After impinger sampling of 5 m3 air in 10 mL absorption solution, this corresponds, to 0.4–0.8 ng/m3 (ca 0.2–0.5 ppt by volume) in air.  相似文献   

3.
A sensitive and straightforward liquid–liquid–liquid microextraction method was developed to preconcentrate and cleanup antidepressants, including mirtazapine, venlafaxine, escitalopram, fluoxetine, and fluvoxamine, from biological samples before analyzing with high-performance liquid chromatography. The essential novelty of this study is using magnetic ionic liquids as the extraction phase in the lumen of hollow fiber and preparing a liquid magnetic stir bar. In this method, polypropylene hollow fiber was utilized as the permeable membrane for the analyte extraction. Six magnetic ionic liquids consisting of the transition metal and rare earth compounds were synthesized and then hollow fiber lumen was injected as acceptor phase to extract the antidepressants. Besides, 3-pentanol as a water-immiscible solvent was impregnated in the hollow fiber wall pores. The effective factors in the method were optimized with the central composition design. The resultant calibration curves were linear over the concentration range of 0.8–400.0 ng mL−1 (R2 ≥ 0.996). The method displayed the proper detection limit (0.11–0.24 ng mL−1), the reasonable limit of quantification (≤0.79 ng mL−1), wide linear ranges, high preconcentration factors (≥294.3), and suitable relative standard deviation (2.31–5.47%) for measuring antidepressant medications. Analysis of human milk and urine samples showed acceptable recoveries of 96.5–103.8% with excellent relative standard deviations lower than 5.95%.  相似文献   

4.
&#;nal  A.  Olcay Sa&#;irli  A.  M&#;ge &#;etin  S.  Toker  S. 《Chromatographia》2007,66(1):103-107

A rapid, simple, accurate, sensitive and reproducible high performance liquid chromatographic method for the quantitation of reboxetine (REB) in human plasma using fluvoxamine as an internal standard (IS) has been developed and validated. The method is based on derivatization with 7-chloro-4-nitrobenzofurazan (NBD-Cl). The NBD-derivatives in plasma were extracted by liquid–liquid extraction and chromatographed on a reversed phase C18 column with isocratic elution using acetonitrile and aqueous nitric acid (pH 3) solution. Calibration curve was linear over the range 2.0–200.0 ng mL−1 with inter- and intra-assay precision (RSD%) of less than 4%. The mean recovery was about 94% for REB. The applicability of the method to the plasma was also studied.

  相似文献   

5.
This paper reports the development of a new methodology for the determination of cobalt in biological samples by using a flow injection system with loaded DPTH-gel as solid phase to preconcentrate analytes. The procedure is based on the on-line preconcentration of cobalt on a microcolumn of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The trapped cobalt is then eluted with 1% tartaric acid and 1% citric acid (7.1 mL) and determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical figures of merit for the determination of cobalt are as follows: detection limit (3S), 8.5 ng mL–1; precision (RSD), 5.8% for 100 ng mL–1 of cobalt; enrichment factor, 13 (using 7.3 mL of sample); sampling frequency, 40 h–1 using a 60-s preconcentration time. For a 120-s preconcentration time (14.6 mL of sample volume) a detection limit of 5.7 ng mL–1, an RSD under 5% at 50 ng mL–1, an enrichment factor of 25, and a sampling frequency of 24 h–1 were reported. The precision and accuracy of the method were checked by analysis of biological certified reference materials.  相似文献   

6.
Carbon nanotubes were modified with magnetite nanoparticles, and 1,4-diazabicyclo[2.2.2]octane (DABCO) was then covalently attached to their surface. The resulting material is shown to be a viable sorbent for the preconcentration of the selective serotonin reuptake inhibitors citalopram, sertraline, fluvoxamine and fluoxetine via ultrasound-assisted magnetic solid phase extraction. The effects of pH value, sorbent dosage, eluent volume and salt concentration were optimized by central composite design and desirability function. The drugs were quantified by HPLC with UV detection. Detection limits are as low as 0.2, 0.25, 0.3, and 0.5 ng mL?1 for citalopram, sertraline, fluvoxamine and fluoxetine, respectively. The intra-day precisions (RSDs) are <4.0%. The method was applied to the determination of the selective serotonin reuptake inhibitors in plasma samples and gave recoveries of >91%. The sorbent can be reused 12 times without a noticeable decrease in extraction efficiency.
Graphical abstract Magnetic carbon nanotubes were modified with 1,4-diazabicyclo[2.2.2]octane (DABCO) with ionic liquid framework. Resulting material was used as a reusable and selective sorbent for preconcentration and extraction of antidepressant drugs from plasma samples.
  相似文献   

7.
An alternative and practical method is described for simultaneous detection and quantification of the potent hallucinogen lysergic acid diethylamide (LSD) and related compounds in urine and serum samples. The procedure is based on liquid–liquid re-extraction with ethyl acetate and reversed-phase liquid chromatography coupled with fluorescence detection (HPLC–FLD). With detection limits in urine and serum samples of ca 0.07 ng mL–1 for LSD, nor-LSD, and iso-LSD, respectively, the method is well suited to forensic investigations. Application of the method to clinical samples and autopsy material enable selective identification and accurate quantification of LSD and related compounds. Comparison of results with those obtained from an LSD immunoassay (EMIT II) emphasize the need for chromatographic confirmation.Revised: 1 December 2003 and 9 February 2004  相似文献   

8.
A sensitive and specific method was developed for the determination of sophoridine (SRI), sophocarpine (SC) and matrine (MT) in rabbit plasma by HPLC-MS. After an administration of Kuhuang by injection, blood samples were collected and extracted with methanol. The extract solutions were analysed by HPLC-MS method. The separation was performed on a ZORBAX Extend-C18 column using methanol/water/diethylamine (50:50:0.07, v/v/v) as mobile phase. The quinolizidine alkaloids were detected by using mass spectrometry in the SIM mode. There was a good linear relationship between peak area and concentration of analytes over the concentration range of 13.2–995.0 ng mL–1 for SRI, 7.0–530.0 ng mL–1 for SC and 8.8–655.0 ng mL–1 for MT, respectively. The absolute recovery of this method was more than 57% for SRI, 87% for SC and 91% for MT. The accuracy of assay was more than 90%. The limits of detection (LODs) were 6.8 ng mL–1 for SRI, 3.5 ng mL–1 for SC and 4.2 ng mL–1 for MT, respectively. The limits of quantitation (LOQs) were 13.2 ng mL–1 for SRI, 7.0 ng mL–1 for SC and 8.8 ng mL–1 for MT, respectively. The intra-day and inter-day coefficients of variation (RSDs) were less than 10.1, 6.3 and 5.8% for SRI, SC and MT, respectively. The developed method was applied to determine the concentration–time profiles of SRI, SC and MT in rabbit plasma after injection of Kuhuang.  相似文献   

9.
A new, simple, sensitive and selective fluorometric method for the determination of nitrite has been developed. The reaction of nitrite with hydralazine in acidic medium, heated on a boiling water-bath for 15 min, produced a tetrazolo (5,1-a) phthalazine (Tetra-P). The product formed was measured at ex = 274 nm and em = 345 nm. The fluorescence intensity was valid over a nitrite concentration range 0.067–60.3 ng mL–1, with a detection limit of 0.0091 ng mL–1. The reproducibility of the proposed method was determined by running a different concentration of nitrite, 13.4, 33.5, and 46.9 ng mL–1. The % recoveries and the relative standard deviations were found to be 100.6 ± 0.9, 99.9 ± 0.5, and 99.4 ± 1.1%, respectively. The proposed method was applied successfully to the determination of nitrogen dioxide sampled from the atmosphere using the liquid droplet method. The nitrogen dioxide our wind tunnel was controlled by an NO x analyzer based on a chemiluminescence analyzer detector (CLAD 1000). A linear graph was obtained for the nitrogen dioxide in the wind tunnel vs. NO2 sampled by the liquid droplet method. The effect of interference substances in the determination showed that cations and anions did not disturb the process. The results obtained were satisfactory when compared with the reference method.  相似文献   

10.
For unequivocal proof of the use of nerve agents such as sarin, soman, cyclohexylsarin, VX, and Russian VX, a simple and accurate method, gas chromatography–mass spectrometry (GC–MS) after trimethylsilyl derivatization, was explored for simultaneous determination of the corresponding alkyl methylphosphonic acids (AMPAs) and of methylphosphonic acid (MPA) in human plasma. GC–MS analysis was performed after solid-phase extraction, with a strong anion-exchange cartridge, from plasma samples previously deproteinized with mercuric acetate, and then derivatization with bis(trimethylsilyl)trifluoroacetamide containing 5% trimethylchlorosilane. All five AMPA derivatives and the MPA derivative were separated to baseline within 11 minutes without interference. Linear calibration plots were obtained over concentrations ranging from 50 ng mL−1 to 5 µg mL−1. The relative standard deviation of recoveries ranged from 1.9 to 9.7% and detection limits were 22 ng mL−1 or below.Revised: 3 and 23 May 2005  相似文献   

11.
Summary A reliable and sensitive high-performance liquid chromatographic method for the determination of the recent antidepressant citalopram and two metabolites in human plasma has been developed. Fluorescence detection at 300 nm was used, exciting at 238 nm. Separation was obtained using a reversed-phase column (C18, 250 × 3.0 mm i.d., 5 μm) and a mobile phase. 40% acetonitrile: 60% aqueous tetramethylammonium perchlorate (pH 1.9). Calibration curves were linear over a working range: 5–300 ng mL−1 for citalopram, 2.5–150.0 ng mL−1 for desmethylcitalopram and 2.5–50.0 ng mL−1 for didesmethylcitalopram. The limits of quantitation (LOQ) were 1.5 ng mL−1 for citalopram and desmethylcitalopram and 2.0 ng mL−1 for didesmethylcitalopram. Precision data, as well as accuracy, were satisfactory and no interference from different psychotropic drugs was found. The method was therefore suitable for therapeutic drug monitoring of citalopram and its active metabolites in plasma of depressed patients.  相似文献   

12.
In this paper a solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)—venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline—in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL–1 urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.  相似文献   

13.
A selective and sensitive liquid chromatographic method was developed for the determination of zonisamide in small volumes of plasma. Zonisamide and the internal standard methyl 4-hydroxybenzoate were extracted from 0.2 mL of plasma with solid-phase extraction columns and eluted with methanol. Analysis of the extracts was performed on a Symmetry C18 column with ultra-violet spectrophotometric detection. The calibration curve was linear over the concentration range of 0.05–5 g mL–1 in plasma. Recoveries were reasonable for routine analyses; the limit of quantification was 0.05 g mL–1 with a signal-to-noise ratio of 5. This method could be useful for the pharmacokinetic study of zonisamide in a limited volume of human plasma and for therapeutic drug monitoring.  相似文献   

14.
A simple, specific and sensitive high performance liquid chromatography-mass spectrometry (LC-MS) method for the determination of risperidone and its active metabolite 9-hydroxyrisperidone in human plasma has been developed and validated. The analytes were prepared through a single-step liquid-liquid extraction (LLE) procedure with the solvent methyl tert-butyl ether and quantitated by MS detection in the positive mode using selected ion monitoring (SIM). Each analytical run was completed within 9 min. Results showed that the LC-MS method enabled to detection of both compounds down to 0.1 ng.mL–1 (S/N > 3) and the linear range was 0.2–24 ng.mL–1, with the correlation coefficients above 0.99. At the concentration of 0.2, 0.5, 10 and 20 ng.mL–1, the inter-day and intra-day RSD were both below 15%. The method has been successfully used to support the routine therapeutic drug monitoring (TDM) and the pharmacokinetics study of risperidone.  相似文献   

15.
Pfeffer  M.  Walenciak-Reddel  E. 《Chromatographia》1994,38(7-8):479-484
Summary A high-performance liquid chromatographic method is discribed for the determination of 6-amino-2,2-dimethyl-1,3-dioxepan-5-ol using Spherisorb ODS II stationary phase and mobile phase 30:70 (v/v) methanol: aqueous 1-octane sulfonic acid. Detection was fluorimetric following postcolumn derivatization with o-phthaladehyde/2-mercaptoethanol. The procedure was applied to the analysis of aqueous solutions and microcrystalline suspensions in liquid paraffin, prepared for investigation of the toxicological profile. The method was validated for selectivity, linearity of detector response, repeatability, limit of detection and quantitation. The HPLC method was selective. The instrumental limit of detection was 0.5 ng per injection (0.05 g mL–1). The method detection limits were 0.5 g mL–1 aqueous solution and 5 g mL–1 liquid paraffin suspension, the quantitation limit 0.05 mg mL–1 aqueous solution and 1.0 mg mL–1 liquid paraffin. Linearity was within 0.94–47.1 g mL–1. Intra-assay accuracy accounted for 99–100% in the range 0.05–226 mg mL–1 aqueous solution, intra-assay precision for 2% (C.V.). For microcrystalline liquid paraffin suspensions with 1 and 250 mg mL–1 99 and 109% was found for intra-assay accuracy. Intra-assay precision was 5% (C.V.). Reliable results over a wide concentration range can be obtained. The procedure is considered valid for determination of the analyte in aqueous solution or microcrystalline paraffin oil suspensions.  相似文献   

16.
A flow injection method using 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol-(Nitro-PAPS) as a new chromogenic reagent is presented for sensitive and rapid determination of vanadium. Nitro-PAPS reacts with vanadium(V) in weakly acidic medium to form a water soluble complex of molar absorptivity of 8.0 × 104L mol–1 cm–1 at 592 nm (maximum absorption wavelength), which permits the straightforward application of a flow injection system to the sensitive determination of vanadium. Under the optimum conditions established, a linear calibration graph was obtained in the range 1–120 ng mL–1. The relative standard deviation for 60 ng mL–1 vanadium was 2.2% (n = 5) and the limit of detection was 1 ng mL–1. The sample throughput is about 40 h–1. Most inorganic and organic anions examined did not interfere even at concentrations of 3000–6000 times of vanadium. Interference from cobalt(II), copper(II) and nickel(II) at 200ng mL–1 levels can be overcome by the addition of N-(dithio-carboxy)sarcosine. The recoveries for each 20 and 10 ng mL–1 vanadium added to the river water were 98 and 97%, respectively.The authors express their thanks to Miss Miho Suzuki and Miss Hiroyo Yamada for their experimental assistance in part.  相似文献   

17.
A simple, rapid, and sensitive high-performance liquid chromatographic (HPLC) method coupled with electrospray mass spectrometry (ESI-MS) has been used to determine sanguinarine and chelerythrine in exogenously contaminated honey. Sample extracts were separated on a C8 reversed-phase HPLC column with acetonitrile–acetate buffer (40:60) as mobile phase. After ESI the abundance of protonated molecules was recorded by selected-ion recording (SIR) of m/z 332.5, 348.5, and 356.5 for sanguinarine, chelerythrine, and the internal standard, tetrahydropalmatine, respectively. The internal standard technique was used to construct calibration plots for quantitation of sanguinarine and chelerythrine; the linear ranges were 5.25–1050 and 3.75–750 ng mL–1, respectively, with correlation coefficients of 0.9993 and 0.9989, respectively. The limits of detection for sanguinarine and chelerythrine were 1.60 and 1.11 ng mL–1, respectively.  相似文献   

18.
A sensitive and selective method for quantitation of glimepiride in human plasma was established using liquid chromatography-electrospray ionization tandem mass spectrometry. Three different methods for the sample preparation of glimepiride and an internal standard were investigated (liquid-liquid extraction, solid-phase extraction and protein precipitation). Glipizide was used as an internal standard. Compounds were separated on a C18 column with 80% acetonitrile and 20% deionized water (adjusted to pH 3.5 with acetic acid), as mobile phase at a flow rate of 200 L min–1. By use of multiple reaction monitoring mode in MS-MS with liquid-liquid extraction and solid-phase extraction, glimepiride and glipizide were detected without severe interference from the human plasma matrix. Glimepiride produced a protonated precursor ion ([M+H]+) at m/z 491 and a corresponding product ion at m/z 352, and the internal standard produced a protonated precursor ion ([M+H]+) at m/z 446 and a corresponding product ion at m/z 321. The limit of quantitation was 0.1 ng mL–1, 0.5 ng mL–1 and 1.0 ng mL–1 when using liquid-liquid extraction, solid-phase extraction and protein precipitation, respectively. The validation, reproducibility, stability, and recovery of the different sample preparation methods were comparable and all the methods gave reliable results. The method has been successfully applied to pharmacokinetic study of glimepiride in human plasma.  相似文献   

19.
A sensitive and selective method for the determination of sofalcone in human plasma was established by use of protein precipitation and liquid chromatography-tandem mass spectrometry. Plasma samples were transferred into 96-well plate using an automated sample handling system and spiked with 10 L of 2 g mL–1 internal standard solution (d3-sofalcone). 0.5 mL of acetonitrile was added to the 96-well plate and the plasma samples were then vortexed for 30 sec. After centrifugation, the supernatant was transferred into another 96-well plate and completely evaporated at 40 °C under a stream of nitrogen. The dry residue was reconstituted with mobile phase. All sample transfer and protein precipitation was automated through the application of both the PerkinElmer MultiPROBE II HT and TOMTEC Quadra 96 workstation. The limit of quantitation of sofalcone was 2 ng mL–1 using a sample volume of 0.2 mL for the analysis. The reproducibility of the method was evaluated by analyzing five samples at nine quality control (QC) levels over the nominal concentration range from 2 ng mL–1 to 1000 ng mL–1. Validation of the method showed that the assay has good precision and accuracy. Sofalcone and internal standard produced a protonated precursor ion ([M+H]+) at m/z 451 and 454, and both gave a corresponding product ion at m/z 315. The high sample throughput of the method has been successfully applied to a pharmacokinetic study of sofalcone in human plasma.  相似文献   

20.
A simple, rapid, sensitive and selective liquid chromatography / tandem mass spectrometry method was developed and validated for the quantification of pentoxifylline, a haemorheological agent. The analyte and internal standard, tamsulosin were extracted by liquid-liquid extraction with ethyl acetate and were separated using an isocratic mobile phase on a reverse phase C18 column. The analytes were analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 279/138 for pentoxifylline and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 2–1000 ng mL−1 for pentoxifylline in human plasma. The lower limit of quantification was 2 ng mL−1 with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. Revised: 4 and 20 October 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号