首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The surface properties of supported gallium oxide catalysts prepared by impregnation of various supports (γ-Al2O3, SiO2, TiO2, ZrO2) were investigated by adsorption microcalorimetry, using ammonia and water as probe molecules. In the case of acidic supports (γ-Al2O3, ZrO2, TiO2), the acidic character of supported gallium catalysts always decreased in comparison with gallium-free supports; on very weakly acidic SiO2, new acidic centers were created when depositing Ga2O3. The addition of gallium oxide decreased the hydrophilic properties of alumina, titania and zirconia, but increased the amount of water adsorbed on silica. The catalytic performances in the selective catalytic reduction of NO by C2H4 in excess oxygenwere in the order Ga/Al2O3>Ga/TiO2>Ga/ZrO2>>Ga/SiO2. This order is more related to the quality of the dispersion of Ga2O3 on the support than to the global acidity of the solids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
SiO2-ZrO2 sols have been prepared via acid catalysis using a commercial colloidal suspension of zirconia and two silica alkoxides; tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES). Suspensions with 10, 15 and 25-mol% of ZrO2 were prepared. The stability of the suspensions was followed by rheological measurements showing that the amount of water incorporated with the colloidal suspension is the factor that limits the maximum ZrO2 content. Coatings have been prepared by dipping using the suspensions up to 25-mol% ZrO2 onto glass-slides at different withdrawal rates. EPD process has been used to prepare coatings onto stainless steel AISI 304 using the suspension with 25-mol% ZrO2 at different pHs. The parameters associated with the EPD process (current density, electric field, potential and deposition time) have been evaluated. The critical thickness for a ZrO2 addition of 25-mol% was 0.8 μm and it increased for diminishing ZrO2 content.  相似文献   

3.
Composite ZrO2-SiO2 powders, with different ZrO2 contents, including pure ZrO2 powders, were prepared by precipitation in SiO2 suspensions, of zirconia gels from solutions of zirconyl chloride at pH = 11. These products were investigated in connection with the phase changes in ZrO2 caused by heat-treatments. ZrO2-SiO2 mixtures containing 0–100% mol ZrO2, were studied by differential thermal analysis (DTA), X-ray powder diffraction (XRD), temperature programmed desorption combined with mass spectroscopy (TPD-MS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), to obtain information on the morphological and structural features of the particles before and during the heat treatment up to 1200°C. Specific surface areas were determined using nitrogen adsorption by the BET method. The results offer an explanation about some of the factors which can be influencing on the stabilization of metastable-cubic/tetragonal (C/T) phase of ZrO2 and the evolution of surface areas (vulcano profile) observed in the composites.  相似文献   

4.
Structural formation process of Ni/SiO2 and Cu/SiO2 catalysts prepared by solution exchange of wet silica gel was investigated. Microstructures of Cu/SiO2 and Ni/SiO2 were quite different from each other. In the case of Cu/SiO2, Cu particles with diameter of ca. 3–5 nm dispersed homogeneously at less Cu content, and the particle size of Cu as well as pore size of silica gel support increased with increasing Cu content. In the Ni/SiO2, the Ni particles with diameter of ca. 6–10 nm gathered densely to form aggregates in silica matrix resulting in sea-island structure, whereas the size of Ni particle slightly increased with increasing Ni content. The difference in the structure of the metal-silica composites is probably caused by the difference in interaction between silica gel network and metal ions during drying and heating processes.  相似文献   

5.
CuO/SiO2 and NiO/SiO2 with bimodal pore structure were prepared by sol-gel reactions of Tetra-methoxysilane (TMOS) and the respective metal nitrate in the presence of poly (ethylene oxide) (PEO) with an average molecular weight of 10 000 and the catalyst of acetic acid. In this process, the interconnected macroporous morphology was formed when transitional structures of spinodal decomposition were frozen by the sol-gel transition of silica. The addition of copper and nickel into the silica-PEO system had a negligible effect on the morphology formation. In gel formation, it was found that NiO crystalline sizes in the samples increased with decreasing Si/Ni molar ratio. It was considered that PEO interacted with both silica and nickel cations. In the CuO/SiO2 with the presence of PEO, CuO crystalline sizes were larger than those of NiO/SiO2. It was considered that there was no obvious interaction between the Cu cation and PEO, most of the copper ions in wet silica gel were present in the outer solution. They easily aggregated as copper salts in the drying process of wet gel and decomposed into CuO particles in heating. While in the CuO/SiO2 with the absence of PEO, the Cu was selectively entrapped as small particles in the gel skeleton due to the interaction between Cu aqua complex and silica gel network.  相似文献   

6.
A novel method to prepare organic/inorganic composite particles, i.e. poly(methyl methacrylate)/CaCO3/SiO2 three-component composite particles, using emulsion polymerization of methyl methacrylate with sodium lauryl sulfate as a surfactant in an aqueous medium was reported. CaCO3/SiO2 two-component inorganic composite particles were obtained firstly by the reaction between Na2CO3 and CaCl2 in porous silica (submicrometer size) aqueous sol and the specific surface area of the particles was measured by the Brunauer–Emmett–Teller (BET) method. The results show that the BET specific surface area of the CaCO3/SiO2 composite particle is much smaller than that of the silica particle, indicating that CaCO3 particles were adsorbed by porous silica and that two-component inorganic composite particles were formed. Before copolymerization with methyl methacrylate, the inorganic composite particles were coated with a modifying agent through covalent attachment. The chemical structures of the poly(methyl methacrylate)/CaCO3/SiO2 composite particles obtained were characterized by Fourier transform IR spectroscopy and thermogravimetric analysis. The results show that the surface of the modified inorganic particles is grafted by the methyl methacrylate molecules and that the grafting percentage is about 15.2%.  相似文献   

7.
High laser-damage resistant coatings are very important in high power laser systems. In this study ZrO2 thin films are prepared by sol-gel spin-coating technology from suitable zirconia aqueous colloidal suspensions containing nano-crystalline ZrO2 at room temperature synthesized by a hydrothermal process from an inorganic precursor (ZrOCl2·8H2O). By adding a soluble organic binder PVP to the suspension prior to application, it is possible to substantially increase the coating refractive index and the abrasion-resistance as well as the laser damage threshold. The features of the coatings and the colloidal suspensions are investigated. Multilayer highly reflective dielectric coatings are also elaborated by applying quarterwave-thick alternating coatings of the binder-aided zirconia and silica, which is prepared with the sol-gel process from TEOS. To achieve 99% reflectivity, 19–21 layers are required. Single shot laser damage tests are carried out using a high power laser at 1064 nm wavelength with a pulse duration of 2.5 ns. The laser damage thresholds of 18 and 15 J/cm2 are achieved for single ZrO2-PVP coating and ZrO2-PVP/SiO2 multilayers respectively.  相似文献   

8.
Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols. The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used. The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120–330 nm and 15%–20%, respectively. TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(7) (in Chinese)  相似文献   

9.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

10.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

11.
SiO2-TiO2-ZrO2 and 5Na2O·95(SiO2 + TiO2 + ZrO2) gels were synthesized and role of Na2O in gel formation and crystallization behavior of gels were studied. From Si(OC2H5)4, Ti(iso-OC3H7)4, Zr(n-OC3H7)4 and NaOCH3 solutions in EtOH without H2O, transparent and opaque gels were obtained. Opaque bulk gels, rich in TiO2 or ZrO2 composition in Na2O containing SiO2-TiO2-ZrO2 system, contain agglomerated spherical particles of diameter small <10 m, in contrast with opaque gels having large particles <30 m in alkali-free SiO2-TiO2-ZrO2 system. Crystallization temperature (Tc) was measured by DTA on dried gels. Compared with the alkali-free SiO2-TiO2-ZrO2 gels, 5 mol% Na2O containing gels gave lower Tc in SiO2 rich compositions and higher in TiO2 rich or ZrO2 rich compositions.  相似文献   

12.
表面活性剂模板在空气-水界面ZrO2薄膜中的稳定性   总被引:1,自引:0,他引:1  
刘孝恒  JohnWhite  汪信 《无机化学学报》2005,21(12):1827-1830
采用模板——十二烷基苯磺酸(DBS-H)在空气-水界面组装ZrO2薄膜,研究了DBS-H在ZrO2自组装薄膜中的水溶性、化学稳定性、热稳定性和光化学稳定性。模板的各类稳定性将直接控制ZrO2薄膜结构,主要表现在层间距变化上。从模板与Na2SiO3反应的研究中获得了一种制备ZrO2 / SiO2复合氧化物薄膜的新方法,并推测出该复合薄膜的结构。  相似文献   

13.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

14.
Homogeneous xSiO2-(1−x)ZrO2 coatings have been prepared onto glass-slides, monocrystalline Si and stainless steel (AISI 304) using sols prepared via acid and basic catalysis. Zirconium tetrabutoxide (TBOZr), zirconium n-propoxide (TPZ), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursors of zirconia and silica, respectively. The different parameters involved in the synthesis procedure, as molar ratios H2O/alkoxides, NaOH/alkoxides, and sintering temperature have been analysed, correlating the stability and rheological properties of the sols. The evolution and structure of the sols and coatings have been studied by FTIR. Coatings have been prepared by dipping from acid and basic sols. Electrophoretic Deposition (EPD) technique has also been used to prepare coatings onto stainless steel from basic particulate sols in order to increase the critical thickness. A maximum thickness of 0.5 μ m was reached by both dipping and EPD process for 75SiO2: 25 ZrO2 composition. The critical thickness decreases with ZrO2 amount depending strongly of the drying conditions. Si–O–Zr bonds have been identified by FTIR, indicating the existence of mixed network Si–O–Zr in the coatings obtained by the different routes. Crystallisation of ZrO2(t) was only observed at high sintering temperature (900C) by FTIR and confirmed by DRX.  相似文献   

15.
Optically active polyurethane/titania/silica (LPU/TiO2/SiO2) multilayered core–shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO2/SiO2 was characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8–14 μm) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO2/SiO2 exhibited clearly multilayered core–shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO2/SiO2 multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value.  相似文献   

16.
ZrO2 has been found to be an effective photocatalyst for reduction of CO2 by hydrogen or methane at room temperature. The effective photon energy is less than the band gap energy of ZrO2 (5.0 eV), indicating that photoexcitation of bulk ZrO2 is not involved. The reaction is initiated by photoexcitation of surface carbonates derived from adsorption of CO2 to convert it to a CO2 radical, which in turn reacts with hydrogen or methane to form surface formate. The formate is stable at temperatures below 573 K, but works as a reductant of CO2 under photoirradiation. A new type of reaction mechanism is proposed.  相似文献   

17.
用沉积沉淀法合成两种不同系列的CeO2-ZrO2-La2O3混合氧化物(ZrO2和La2O3沉积CeO2粒子(标记为A-x)以及CeO2和La2O3沉积ZrO2粒子(标记为B-x)),并用作Rh催化剂的载体。XRD、拉曼、TPR、XPS和O2脉冲等表征结果显示出不同的沉积顺序将导致不同的结构和氧化还原性能,且B-x具有更高的氧迁移性、储氧能力和表面Ce浓度。当其负载Rh后,Rh/B-x催化剂具有更高的NO和CO转化率及N2选择性,且Ce的最佳含量为50at%。这可能归因于Rh负载于富铈表面形成更多有利于NO分解的表面Ce3+活性位。  相似文献   

18.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

19.
Tao Lin 《Acta Physico》2008,24(7):1127-1131
Monolith catalysts were prepared using TiO2 and ZrO2-TiO2 as supports with MnO2 as active component and Fe2O3 as promoter. The catalytic activities at low temperature and stability at high temperature for selective catalytic reduction of NOx with NH3 (NH3-SCR) in the presence of excessive O2 were studied after the catalysts calcined at different temperatures. The catalysts were characterized by X-ray diffraction (XRD), specific surface area measurements (BET), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results indicated that the catalyst supported on ZrO2-TiO2 had excellent stability at high temperature, and possessed high specific surface area and oxygen storage capacity, and had strong redox property. The results of the catalytic activities indicated that the monolith manganese-based catalyst using ZrO2-TiO2 as support had evidently improved the activity of NH3-SCR reduction reaction at low temperature, and it showed great potential for practical application.  相似文献   

20.
Tao Lin  Wei Li  Maochu Gong  Yao Yu  Bo Du  Yaoqiang Chen   《Acta Physico》2007,23(12):1851-1856
TiO2,ZrO2-TiO2,andZrO2-TiO2-CeO2 were prepared by co-precipitation method and characterized by X-ray diffraction (XRD), specific surface area measurements (BET), temperature programmed desorption (NH3-TPD), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results showed that ZrO2-TiO2-CeO2 exhibited large number of surface strong acid, possessed some oxygen storage capacity, and strong redox property. The three materials were used as supports and the monolith catalysts were prepared with 1% (w) V2O5 and 9% (w)WO3 for selective catalytic reduction (SCR) of NO with ammonia in the presence of excessive O2, and the results of catalytic activity showed that the catalyst used ZrO2-TiO2-CeO2 as support yielded nearly 100% NO conversion at 275 °C at a gas hourly space velocity (GHSV) of 10000 h−1, and it had the best catalytic activity and showed great potential for practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号