首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions.  相似文献   

2.
This paper deals with determining points of zero charge of natural and Na+‐saturated mineral kaolinites using two methods: (1) acid‐base potentiometric titration was employed to obtain the adsorption of H+ and OH? on amphoteric surfaces in solutions of varying ionic strengths in order to determinate graphically the point of zero net proton charge (PZNPC) defined equally as point of zero salt effect (PZSE); (2) mass titration curve at different electrolyte concentrations in order to estimate PZNPCs by interpolation and to compare with those determined by potentiometric titrations. The two methods involved points of zero charge approximately similar for the two kaolinites between 6.5‐7.8, comparable to those reported previously and were in the range expected for these clay minerals. The comparison of potentiometric surface titration curves obtained at 25 °C and those published in the literature reveals significant discrepancies both in the shape and in the pH of PZNPCs values.  相似文献   

3.
沉淀溶解法制备纳米硫化锌   总被引:7,自引:0,他引:7  
以烷基黄原酸锌和硫化钠分别为锌源和硫源,采用烷基黄原酸锌沉淀溶解法制备了粒度可调、粒径分布比较窄的面心硫化锌纳米粒子,利用比表面积(BET)测定、透射电镜(TEM)、粉末X射线衍射(XRD)、傅里叶转换红外光谱(FTIR)等方法对合成的硫化锌纳米粒子进行了表征。结果表明随着烷基黄原酸锌链长的增长,通过添加硫化钠而生成的硫化锌纳米粒子的粒径逐渐减小。本文还对沉淀溶解法制备纳米硫化锌的溶液化学反应机理进行了探讨。  相似文献   

4.
Aquabacterium commune, a predominant member of European drinking water biofilms, was chosen as a model bacterium to study the role of functional groups on the cell surface that control the changes in the chemical cell surface properties in aqueous electrolyte solutions at different pH values. Cell surface properties of A. commune were examined by potentiometric titrations, modeling, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. By combining FTIR data at different pH values and potentiometric titration data with thermodynamic model optimization, the presence, concentration, and changes of organic functional groups on the cell surface (e.g., carboxyl, phosphoryl, and amine groups) were inferred. The pH of zero proton charge, pH(zpc) = 3.7, found from titrations of A. commune at different electrolyte concentrations and resulting from equilibrium speciation calculations suggests that the net surface charge is negative at drinking water pH in the absence of other charge determining ions. In situ FTIR was used to describe and monitor chemical interactions between bacteria and liquid solutions at different pH in real time. XPS analysis was performed to quantify the elemental surface composition, to assess the local chemical environment of carbon and oxygen at the cell wall, and to calculate the overall concentrations of polysaccharides, peptides, and hydrocarbon compounds of the cell surface. Thermodynamic parameters for proton adsorption are compared with parameters for other gram-negative bacteria. This work shows how the combination of potentiometric titrations, modeling, XPS, and FTIR spectroscopy allows a more comprehensive characterization of bacterial cell surfaces and cell wall reactivity as the initial step to understand the fundamental mechanisms involved in bacterial adhesion to solid surfaces and transport in aqueous systems.  相似文献   

5.
Surface-charging behavior of Zn-Cr layered double hydroxide   总被引:1,自引:0,他引:1  
A Zn-Cr layered double hydroxide (LDH) having the formula Zn(2)Cr(OH)(6)Cl(0.7)(CO(3))(0.15)2.1H(2)O was synthesized and characterized by powder X-ray diffraction, infrared spectroscopy, acid-base potentiometric titration, mass titration, electrophoretic mobility, and modeling of the electrical double layer. Adsorption of alizarin was also performed in order to show some particular features of the HDL. Net hydroxyl adsorption, which increases with increasing pH and decreasing supporting electrolyte concentration, takes place above pH 5. The electrophoretic mobility of the particles was always positive and it decreased when the pH was higher than 9. An isoelectric point of 12 could be estimated by extrapolating the data. The modified MUSIC model was used to estimate deprotonation constants of surface groups and different adsorption models were compared. Good fit of hydroxyl adsorption and electrophoresis could be achieved by considering both OH(-)/Cl(-) exchange at structural sites and proton desorption from surface hydroxyl groups. The modeling, in agreement with alizarin adsorption, indicates that most of the structural positive charge of the LDH is screened at the surface by exchanged anions and negatively charged surface groups. It also suggests that only structural charge sites initially neutralized by chloride ions are active for anion exchange. The remaining sites are blocked by carbonate and do not participate in the exchange.  相似文献   

6.
The present work addresses the protolytic charge of montmorillonite, which occurs on the broken-bond sites at the particle edges. The purpose is to overcome the general difficulty arising in potentiometric titration due to coupled side reactions, which severely impede the titrant budget (partial dissolution of the clay and of secondary phases, hydrolysis and readsorption of dissolved species, cation exchange). Batch potentiometric titrations were carried out on the montmorillonite fractions extracted from two bentonites (MX80 and SWy2) to quantify their protolytic charge. The effects of equilibration time (24 h and 7 days), pH from 4 to 10, and ionic strength (0.1 and 0.01 mol L(-1)) were extensively studied for the MX80 sample. Quantification of dissolution was achieved by analysis of the equilibrium solutions for dissolved species and by La(3+) exchange of the readsorbed species. The results clearly show that secondary phases such as iron- or silica-rich minerals contribute to the dissolved species, according to the nature of the raw bentonite. Furthermore, readsorption affects significant amounts of dissolved species. The overconsumption of proton/hydroxide due to dissolution, readsorption, and hydrolysis of dissolved species was evaluated using a self-consistent thermodynamic calculation. The ability of such calculation to correct the raw titration curves in order to extract the titrable surface charge of montmorillonite was evaluated by comparison with the continuous titration procedure. Especially in the alkaline domain, correcting the raw batch titration curves for the measured side reactions failed to reproduce the continuous titration curves. These observations demonstrate the limitations of the batch titration method and the superiority of fast, continuous methods for quantifying the dissociable surface charge of clays.  相似文献   

7.
The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and two dimensional(2D) correlation analysis.The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal.The appearance of spectral peaks at 1203 cm-1,1033 cm-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO.According to 1R intensity changes after rinsing with deionized water and a NaOH solution,the adsorption was proved to be a chemisorption type.The competition between xanthate and OH for the surfaces leads to desorption of xanthate at higher pH.The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process,and the results indicated that xanthate micelles were formed at the surfaces.The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g-1 after 150 min.  相似文献   

8.
Prasad MS 《Talanta》1971,18(6):649-652
A convenient method for the reduction and determination of dixaathogen has been developed. It is based on the quantitative reaction of dixanthogen with zinc amalgam to form xanthate; the latter can be determined by iodine titration, potentiometric titration with silver nitrate or by spectrophotometry at 310 mmu. Dixanthogen can be determined in mixtures containing xanthate, by titration of aliquots with and without reduction. Higher dixanthogens can also be determined, and flotation liquors analysed.  相似文献   

9.
The adsorption properties and surface charge creation for the stearic acid and octadecane/aqueous electrolyte solutions are considered. The hairy structure of surface charge for these systems was confirmed on the basis of potentiometric titration, ion adsorption and electrophoretic measurement data. For the system with stearic acid the reaction of ionization and complexation of carboxyl groups of stearic acid molecules from subsurface layer are responsible for the creation of surface charge and adsorption properties. The surface charge at octadecane particle is probably the results in adsorption and orientation of water molecules at the interface.  相似文献   

10.
We have studied the activation kinetics of zinc sulfide (ZnS) using silver as an activator by a quartz crystal microbalance with dissipation (QCM-D). The zinc sulfide coating on QCM-D sensor was shown to have similar crystallographic structure, composition, and surface properties as nature sphalerite through the characterization of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and xanthate adsorption measurement using QCM-D. The activation of ZnS sensor by silver was confirmed by the mass increase in ZnS sensor coupled with subsequent xanthate adsorption during QCM-D measurement, the change of surface wettability, and the presence of Ag(2)S on the surface. Two distinct stages on the silver uptake vs. time curve were identified and fitted well by a logarithmic function for the initial stage and a parabolic law in the later stage, which agrees with the two-stage zinc-silver reaction kinetics reported previously. Argon sputtering followed by XPS measurement on the ZnS surface demonstrated the penetration of silver into the bulk ZnS after activation. The present study is the first of its kind to apply the QCM-D technique to investigate sphalerite activation, which introduces a new in situ approach to investigate surface adsorption and activation in many mineral processes and surface modifications.  相似文献   

11.
The influence of 2,2'-bipyridine (bipy) on adsorption of zink ions onto a highly dispersed silica surface has been studied. The enhanced adsorption of zink ions onto silica surface from the solution containing 2,2'-bipyridine is explained by ternary surface complex formation, { identical withSiOH(-m)Zn(bipy)(n)((2-m)+)}. The adsorbed Zn(2+) and bipy concentrations were measured at the adsorption from solutions with different ratios of Zn : bipy. The equilibrium reaction constants of binary and ternary complexes have been calculated using the constant capacitance model. The potentiometric titration data were used in order to determine the H(+)/Zn(2+) exchange stoichiometry. The composition of formed surface complexes has been confirmed with their UV absorption spectra. Copyright 2001 Academic Press.  相似文献   

12.
The net proton surface charge density of silica suspended in water-acetone mixtures was studied by potentiometric titration. LiCl and NaCl were used as background electrolytes at concentrations of 10(-1), 10(-2), and 10(-3) mol L-1. The results showed that acetone lowers the net proton surface charge density of silica and that the greater the decrease, the greater the acetone concentration. The surface charge density of silica also is very sensitive to the nature of the background electrolyte, LiCl producing much lower surface charge densities than NaCl. The concept of free energy of transfer (DeltaG0t) of an electrolyte between two different solvents was applied to explain the results in a qualitative manner. Copyright 1999 Academic Press.  相似文献   

13.
Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.  相似文献   

14.
The effect of electrolyte (NaHCO3) concentration on the adsorption of poly-DADMAC (poly-diallyldimethylammonium chloride) onto cellulosic fibers with different charge profiles was investigated. Surface carboxymethylated fibers were obtained by grafting carboxymethyl cellulose (CMC) onto the fiber surface and bulk carboxymethylated fibers were obtained by reacting the fibers with monochloroacetic acid. It was shown that nonionic interactions do not exist between cellulose and poly-DADMAC, rather electrostatic interactions govern the adsorption. Charge stoichiometry prevails under electrolyte-free conditions, whereas surface charge overcompensation occurs at higher electrolyte concentrations. It was shown that charge stoichiometry prevails if the thickness of the electric double layer kappa(-1) was larger than the mean distance between the charges on the fiber surface, as predicted by polyelectrolyte adsorption theories, taking lateral correlation effects into account. In a second set of experiments the ESCA technique served to independently calibrate the polyelectrolyte titrations for determining the surface charge of cellulosic fibers. Various molecular masses of poly-DADMAC were adsorbed to carboxymethylated fibers having different charge profiles. The adsorption of low M(w) poly-DADMAC (7.0 x 10(3)), analyzed by polyelectrolyte titration, was about 10 times higher than that of the high M(w) poly-DADMAC (9.2 x 10(5)). Despite the difference in accessibility of these two polyelectrolytes to the fiber cell wall, ESCA surface analysis showed, as expected, only slight differences between the two polyelectrolytes. This gives strong credibility to the idea that surface charge content of cellulosic fibers can be analyzed by means of adsorption of a high-molecular-mass cationic polymer, i.e., by polyelectrolyte titration.  相似文献   

15.
Adsorption isotherms of single and double chain cationic surfactants with different chain length (cetyltrimethyl-, didodecyl- and dihexadecyl ammonium bromide) onto cellulose nanofibrils were determined. Nanofibrillated cellulose, also known as microfibrillated cellulose (MFC), with varying contents of carboxyl groups (different surface charge) was prepared by TEMPO-mediated oxidation followed by mechanical fibrillation. The fibril charge was characterized by potentiometric and conductometric titration. Surfactant adsorption was verified by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Wetting and adhesion of water onto fibril films was determined by contact angle measurements. Small aggregates (admicelles) of surfactant were shown to form on the nanofibril surfaces, well below critical micelle concentrations. The results demonstrate the possibility of using cationic surfactants to systematically control the degree of water wettability of cellulose nanofibrils.  相似文献   

16.
The objective of this study is to gain an understanding of the kinetics of adsorption of complexes formed in aqueous solution by oppositely charged polyelectrolytes. The properties of the complexes were characterized by means of dynamic light scattering and electrophoretic mobility and the reaction stoichiometry was studied by titration. The stoichiometry in the complexes depends on the polymer weight ratio w(p). Their point of zero charge (pzc) is shifted toward lower w(p) when simple cations of higher valence are added to the solution. The adsorption kinetics of the complexes on silica was studied by stagnation point reflectometry. The sign of charge of the complexes as well as the valence and concentration of simple cations governs the occurrence of adsorption in the electrolytes studied. Five different types of adsorption kinetics were found. Copyright 2001 Academic Press.  相似文献   

17.
采用自动电位酸碱滴定技术研究了水化介孔氧化硅的表面脱质子反应.基于悬浮液的酸碱滴定数据,用Gran图法计算得到了介孔氧化硅表面氢离子键位点浓度.利用FITEQL4.0软件,采用双电层恒电容模型计算得到了相应的表面酸碱平衡常数.结果表明,与无定形氧化硅不同,介孔氧化硅表面存在对应于双齿表面硅羟基≡Si2OH和单齿表面硅羟基≡SiOH的两个脱质子常数,分别为pKa1=6.78±0.15,pKa2=10.25±0.22.根据测定得出的介孔氧化硅表面脱质子常数,构建了不同pH条件下,介孔氧化硅表面优势组分分布图,并讨论了表面电容预赋值对氧化硅表面组分分布的影响.  相似文献   

18.
铈铁复合氧化物阴离子吸附剂的表面酸碱特性研究   总被引:1,自引:0,他引:1  
研究了用于水体砷等有害阴离子去除的稀土铈铁复合氧化物吸附剂的表面酸碱特性。利用电位滴定实验求定了铈铁复合氧化物吸附剂、铁氧化物和铈氧化物的表面质子电荷密度s0、零电荷点pHzpc (分别为5.8,6.2和6.8),表明特性吸附在砷等的去除中起主要的作用,铈铁复合氧化物吸附剂的表面总吸附位NS为4.1×10-3mol/L,运用表面络合恒定容量模式求算此复合氧化物吸附剂的表面固有酸度常数pKa1和pKa2,为进一步研究有害阴离子与去除材料的表面络合作用机制提供了重要参数。  相似文献   

19.
采用电势滴定(potentiometric titration,PT)法测定了Zn-Al类水滑石(HTlc)的零净电荷点(pHPZNC);利用电势滴定数据直接计算得到Zn-Al HTlc的内禀电离平衡常数(pKa2int)和质子吸附自由能(G0ads,2);研究了结构电荷密度(σp)对pKa2int 和G0ads,2的影响.结果表明,随σp增加, pKa2int 和G0ads,2数值均降低,说明σp越大,带正电荷的HTlc与H+结合力越低,HTlc去质子能力越强,H+游离出HTlc表面的趋势越大.研究发现,HTlc的pKa2int与pHPZNC之间符合关系式: pKa2int =1.372pHPZNC-3.328.  相似文献   

20.
The adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide (delta-MnO2) has been studied using two methods, viz., isotherms at constant pH in the presence of buffer solution and pH variation in the absence of buffer solution from a fixed metal ion concentration. While the adsorption isotherm experiments were carried out in 0.5 M NaCl only, pH variation or batch titration experiments were carried out in 0.5 M NaCl, 0.01 M NaCl, and 0.01 M KNO3 solutions. The complex nature of adsorption isotherms at constant pH values indicates that adsorption of all the cations is non-Langmuirian (Freundlich) and takes place on the highly heterogeneous oxide surface with different binding energies. The proton stoichiometry derived from isotherms at two close pH values varies between 0.3 and 0.8. The variation of fractional adsorption with pH indicates that the background electrolyte solution influences the adsorption of cations through either metal-like or ligand-like complexes with Cl-, the former showing a low adsorption tendency. The proton stoichiometry values derived from the Kurbatov-type plot varies not only with the electrolyte solution but also with the adsorbate/adsorbent ratio. The variation of fractional adsorption with pH can be modeled either with the formation of the SOM+ type or with a combination of SOM+ and SOMOH type complexes, depending upon the cation and electrolyte medium. The equilibrium constants obtained from Kurbatov-type plots are found to be most suitable in these model calculations. Adsorption calculated on the basis of ternary surface metal-chlorocomplex formation exhibits very low values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号