首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the magnetization of Yb0.8Y0.2InCu4 as a function of temperature down to 0.6 K, pressure up to 1.2 GPa, and magnetic field up to 9 T. The valence transition temperature of Yb0.8Y0.2InCu4 is lowered with applying pressure. At 0.8 GPa, collapse of the valence transition and ferromagnetic ordering occur almost simultaneously. The ferromagnetic phase at 1.2 GPa is characterized by a low Curie temperature of 1.7 K and an extremely small ordered moment of 0.05 micro(B) per Yb. Some effect of screening the ordered moment may play a key role in the ferromagnetism and the valence transition.  相似文献   

2.
We combine x-ray magnetic circular dichroism spectroscopy at Fe L2,3 edges, at Eu M4,5 edges, x-ray absorption spectroscopy (XAS) investigation of Eu valence, and local spin density calculations, to show that the filled skutterudite Eu0.95Fe4Sb12 is a ferrimagnet in which the Fe 3d moment and the Eu2+ 4f moment are magnetically ordered with dominant antiferromagnetic coupling. From Eu L3 edge XAS, we find that about 13% of the Eu have a formal valence of 3+. We ascribe the origin of ferrimagnetism at a relatively high transition temperature TC of 85 K in Eu0.95Fe4Sb12 to f-electron interaction with the nearly ferromagnetic [Fe4Sb12]2.2- host lattice.  相似文献   

3.
Sm-based heavy-fermion compound SmOs4Sb12 has been investigated by soft x-ray (hnu=1070-1600 eV) and hard x-ray (HX; hnu=7932 eV) spectroscopy. The HX photoemission spectroscopy clearly demonstrates that the strongly mixed-valence state and the heavy-fermion state coexist in the bulk. It is found that the Sm valence decreases below 100 K, indicating that the Kondo coherence develops with approaching the proposed Kondo temperature. Our theoretical analyses suggest that the origin of the coexistence in SmOs4Sb12 is the coincidence of two conditions, namely, (i) the energy difference between Sm divalent and trivalent states is very small and (ii) the hybridization between Sm 4f and conduction electrons is weak.  相似文献   

4.
The superconducting transition temperature, Tc, of the LaT4P12 compounds with T = Fe, Ru, or Os has been measured under hydrostatic pressure P up to 1.8 GPa. The T = Fe compound exhibits a substantial increase of Tc from Tc (P = 0) = 4.1 K at a rate (dTc/dP)P=0= +7.2 x 10-1 K/GPa. In contrast, the Ru and Os compounds exhibit only weak decreases of Tc from Tc (P = 0) = 7.2 K and 1.8 K with (dTc/dP)P=0= -1.6 x 10-1 K/GPa and -9.5 x 10-2 K/GPa, respectively. An analysis of this strikingly divergent behavior of Tc(P) in terms of the structural characteristics of the RT4X12 class of compounds where R = rare earth element, T = Fe, Ru, or Os, and X = P, As, or Sb suggests that Tc(P) for these materials consists of two competing contributions: a depression of Tc due to the compression of the lattice (i.e., decrease in volume), and an enhancement of Tc due to the effect of pressure on La itself.  相似文献   

5.
57Fe Mössbauer absorption spectra under ultra-high pressure up to 53 GPa have been measured using a diamond anvil cell for SrFeO2.97 which is one of the typical Fe4+ oxides having a cubic perovskite structure. External high pressure up to 53 GPa makes no indication of structural transformation and does not show any change in valence state of iron, however the Néel temperature of 131 K at 0 GP increases to 300 K and the57Fe magnetic hyperfine field decreases from 32.9 T at 0 GPa and 6.5 K to 23.3 T at 53 GPa and 300 K.  相似文献   

6.
Abstract

A metastable hexagonal close-packed (hcp) phase obtained by rapid quenching from the melt has been compressed to 5.7 GPa and annealed up to 1023 K. The axial ratios (c/a) of the hcp structure at the initial state, the stable state annealed under high pressure (5.7 GPa, 673 K) and the quenched state from high pressure and high temperature condition are 1.630, 1.635 and 1.628, respectively.

The volume reduction of the hcp structure by application of high pressure gives rise to increase the c/a ratio, which corresponds to an apparent reduction in the number of valence electrons per atom (e/a) in the Hume-Rothery alloys.  相似文献   

7.
Abstract

We have measured LIII-edge x-ray absorption spectra (LIII-XA) of Yb in YbS and YbTe and optical reflectivity spectra of YbTe at pressures up to 34 GPa. In both materials the Yb ion undergoes a continuous valence change. In the case of YbS, the pressure-induced variation of the Yb mean valence v(IIII) agrees well with previous optical and lattice parameter studies. For YbTe, however, the XA data indicate the onset of a valence transition at a lower pressure (~10 GPa) than observed in optical spectra (~16 GPa). This behavior is explained by larger hybridization effects between the chalcogen p-bands and 4f states in YbTe as compared to YbS.  相似文献   

8.
M?ssbauer spectroscopy, x-ray diffraction, and electrical resistance [R(P,T)] studies in Fe(OH)(2) to 40 GPa revealed an unforeseen process by which a gradual Fe2+ oxidation takes place, starting at approximately 8 GPa reaching 70% Fe3+ abundance at 40 GPa. The nonreversible process Fe2+-->Fe3++e(-) occurs with no structural transition. The "ejected" electrons form a deep band within the high-pressure electronic manifold becoming weakly localized at P>50 GPa. This process is attributed to an effective ionization potential created by the pressure induced orientationally deformed (OH) dipoles and the unusual small binding energy of the valence electron in Fe2+(OH)(2).  相似文献   

9.
Yb 3d and valence-band photoemission spectra of the first-order valence-transition compound YbInCu4 have been measured with hard x ray at an excitation energy of 5.95 keV. Abrupt changes are clearly observed in both spectra around the transition temperature T(V)=42 K, in comparison with ultraviolet and soft x-ray photoemission (VUV-PES and SX-PES) spectra. From the Yb 3d spectra, the Yb valence has been estimated to be approximately 2.90 from 220 down to 50 K and approximately 2.74 at 30-10 K. We propose that Yb 3d hard x-ray photoemission spectroscopy is a very powerful method to estimate the valence of Yb with high accuracy. On the other hand, the Yb2+ 4f-derived peaks in the valence-band spectra exhibit a remarkable enhancement below T(V). The shape of the valence-band spectra is different from those of the VUV-PES and SX-PES spectra above T(V), reflecting the In 5s and 5p contributions.  相似文献   

10.
The high-pressure behaviour of Bi2Fe4O9 was analysed by in situ powder and single-crystal x-ray diffraction and Raman spectroscopy. Pressures up to 34.3(8) GPa were generated using the diamond anvil cell technique. A reversible phase transition is observed at approximately 6.89(6) GPa and the high-pressure structure is stable up to 26.3(1) GPa. At higher pressures the onset of amorphization is observed. The crystal structures were refined from single-crystal data at ambient pressure and pressures of 4.49(2), 6.46(2), 7.26(2) and 9.4(1) GPa. The high-pressure structure is isotypic to the high-pressure structure of Bi2Ga4O9. The lower phase transition pressure of Bi2Fe4O9 with respect to that of Bi2Ga4O9 (16 GPa) confirms the previously proposed strong influence of cation substitution on the high-pressure stability and the misfit of Ga3+ and Fe3+ in tetrahedral coordination at high pressure. A fit of a second-order Birch–Murnaghan equation of state to the p–V data results in K0 = 74(3) GPa for the low-pressure phase and K0 = 79(2) GPa for the high-pressure phase. The mode Grüneisen parameters were obtained from Raman-spectroscopic measurements.  相似文献   

11.
 使用Bundy和Dunn发展起来的带有烧结金刚石砧的Drickamer型高压装置,用固定点测压法标定实验压力,在室温及0~43 GPa的压力范围内测量了稀土金属中Pr、Nd、Sm、Gd、Tb、Dy、Ho、Tm、Lu和Yb的电阻随压力的变化。在各稀土元素的电阻随压力变化的曲线上,观测到了若干“凸起”和斜率突变点,根据Jayaraman提出的三价稀土在压力作用下的相变顺序,得到了这些突(凸)变点分别对应着hcp→Sm-type→dhcp→fcc相变顺序中的某一类型的相变压力。此外还观测到了Pr、Gd、Tb的fcc相随着压力再增高而发生的相变,根据已报导的关于Pr的工作,推测Gd和Tb的这一相变应为fcc→dfcc相变,它们分别发生在22.0和24.5 GPa。在本工作所得结果基础上对Johansson的三价稀土总相图进行了修正。  相似文献   

12.
We report the results of optical studies of new heavy fermion compounds YbFe(4)Sb(12) and CeRu(4)Sb(12). We show that these compounds, as well as several other heavy fermion materials with a nonmagnetic ground state, obey a universal scaling relationship between the quasiparticle effective mass m(*) and the magnitude of the energy gap Delta in the excitation spectrum. This result is in accord with the picture of hybridization of localized f-electron and free carrier states.  相似文献   

13.
Chuchu Zhu 《中国物理 B》2022,31(7):76201-076201
Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.  相似文献   

14.
We performed resistivity measurements in CuRh2S4 under quasihydrostatic pressure of up to 8.0 GPa, and found a pressure-induced superconductor-insulator transition. Initially, with increasing pressure, the superconducting transition temperature T(c) increases from 4.7 K at ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With further compression, superconductivity in CuRh2S4 disappears abruptly at a critical pressure P(SI) between 5.0 and 5.6 GPa, when it becomes an insulator.  相似文献   

15.
Fe K-edge x-ray magnetic circular dichroism of magnetite (Fe3O4) powders was measured with synchrotron radiation under variable pressure and temperature conditions in diamond anvil cell. The magnetic dichroism was observed to decrease discontinuously by approximately 50% between 12 and 16 GPa, independent of temperature. The magnetic transition is attributed to a high-spin to intermediate-spin transition of Fe2+ ions in the octahedral sites and could account for previously observed structural and electrical anomalies in magnetite at this pressure range. The interpretation of x-ray magnetic circular dichroism data is supported by x-ray emission spectroscopy and theoretical cluster calculations.  相似文献   

16.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

17.
Methods have been developed to facilitate the data analysis of multiple two-dimensional powder diffraction images. These include, among others, automatic detection and calibration of Debye-Scherrer ellipses using pattern recognition techniques, and signal filtering employing established statistical procedures like fractile statistics.All algorithms are implemented in the freely available program package Powder3D developed for the evaluation and graphical presentation of large powder diffraction data sets.As a case study, we report the pressure dependence of the crystal structure of iron antimony oxide FeSb(2)O(4) (p≤21?GPa, T = 298?K) using high-resolution angle dispersive x-ray powder diffraction. FeSb(2)O(4) shows two phase transitions in the measured pressure range. The crystal structures of all modifications consist of frameworks of Fe(2+)O(6) octahedra and irregular Sb(3+)O(4) polyhedra. At ambient conditions, FeSb(2)O(4) crystallizes in space group P4(2)/mbc (phase I). Between p = 3.2?GPa and 4.1?GPa it exhibits a displacive second order phase transition to a structure of space group P 2(1)/c (phase II, a = 5.7792(4)??, b = 8.3134(9)??, c = 8.4545(11)??, β = 91.879(10)°, at p = 4.2?GPa). A second phase transition occurs between p = 6.4?GPa and 7.4?GPa to a structure of space group P4(2)/m (phase III, a = 7.8498(4)??, c = 5.7452(5)??, at p = 10.5?GPa). A nonlinear compression behaviour over the entire pressure range is observed, which can be described by three Vinet equations in the ranges from p = 0.52?GPa to p = 3.12?GPa, p = 4.2?GPa to p = 6.3?GPa and from p = 7.5?GPa to p = 19.8?GPa. The extrapolated bulk moduli of the high-pressure phases were determined to K(0) = 49(2)?GPa for phase I, K(0) = 27(3)?GPa for phase II and K(0) = 45(2)?GPa for phase III. The crystal structures of all phases are refined against x-ray powder data measured at several pressures between p = 0.52?GPa, and 10.5?GPa.  相似文献   

18.
采用密度泛函理论与准谐振德拜模型研究了面心立方相的6Li2O在极端条件下的热力学性质与电子结构。结果表明: 6Li2O的热膨胀系数在任何温度下都随压强增加明显降低,但仅当压强较低(低于40 GPa)时,温度对6Li2O的热膨胀系数的影响才明显;O原子半径随压强增大而迅速降低,而随温度的变化并不明显;在低压条件下(低于40 GPa),带隙随温度的升高缓慢降低;而在高压条件下(高于40 GPa),温度对带隙宽度的影响几乎可以忽略;无论在什么温度条件下,带隙宽度均随压强的增大而迅速增加。  相似文献   

19.
 采用密度泛函理论与准谐振德拜模型研究了面心立方相的6Li2O在极端条件下的热力学性质与电子结构。结果表明: 6Li2O的热膨胀系数在任何温度下都随压强增加明显降低,但仅当压强较低(低于40 GPa)时,温度对6Li2O的热膨胀系数的影响才明显;O原子半径随压强增大而迅速降低,而随温度的变化并不明显;在低压条件下(低于40 GPa),带隙随温度的升高缓慢降低;而在高压条件下(高于40 GPa),温度对带隙宽度的影响几乎可以忽略;无论在什么温度条件下,带隙宽度均随压强的增大而迅速增加。  相似文献   

20.
吴文霞  郭永权  李安华  李卫 《物理学报》2008,57(4):2486-2492
应用固体与分子经验电子理论计算了Nd2Fe14B的价电子结构、磁矩和居里温度,计算结果与实验值相符.计算表明:该合金的磁性与3d磁电子数成正比.从Fe(c)晶位到Fe(k2)晶位磁矩增加,其机理源于价电子、哑对电子和3d磁电子之间的转化,有78%的哑对电子和18%的3d共价电子转化成了磁电子.居里温度和磁矩与Fe原子配位数成正比,与加权等同键数Iσ成反比,Nd原子 关键词: 2Fe14B')" href="#">Nd2Fe14B 价电子结构 居里温度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号