首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric and electronic structures of a series of conjugated macrocycles (phenylene-acetylene macrocycles, PAMs) have been studied theoretically with ab initio and semiempirical molecular orbital methods. The ab initio calculations at the HF/6-31G* level demonstrate that the model molecules may have a planar conformation. Bigger macrocycles, for example, 7PAM, 8PAM, and 9PAM, result in several energy minima. The boatlike conformation is the most energetically favored form. Based on the conformational analysis, a novel method for analyzing the ring-strain energy was proposed and used. In view of their potential applications as electronic materials, the electronic structures of a series of PAMs are also investigated. The LUMO-HOMO gaps of the planar PAMs show an odd-even difference behavior. In addition, the HOMOs of the planar species 3PAM, 5PAM, 7PAM, and 9PAM are doubly degenerated.  相似文献   

2.
Molecular mechanics (MM2) parameters for silanes which have a Si-C-Cl fragment have been developed based on available experimental data and ab initio molecular orbital (MO) calculations. Molecular properties, mainly rotational barriers and geometries, of α-chlorosilanes have been studied using our new MM2 parameter set. Changes in the Si-C bond lengths and several bond angles of α-chlorosilanes due to the additional attachment of polar atom(s) have been investigated utilizing ab initio calculations. An electronegativity correction to both bond lengths and angles helps MM2 to reproduce results from ab initio calculations. The new force field has been applied to the conformational analysis of l-(chloromethyl)-1,2-dimethylsilacyclopentane, a model used in our studies of rearrangements of α-halosilanes.  相似文献   

3.
4.
湛昌国 《有机化学》1995,15(3):239-244
本文对5-甲硫基-3-N-苯基-2,3-2(H)-1,3,4,2-噻二唑磷茂啉的磷烯正离子等三个相关分子的平衡几何构型进行了从头算解析能量梯度方法的全优化计算. 优化结果表明, 二配位磷烯正离子与相应的三配位磷母体分子的结构有本质的差异.形成二配位磷烯正离子后,磷所在的五员环形成共轭体系而使原来的单键键长变短, 原来的双键键长变长, 且使原来不共面的五员环共面. 在优化的平衡几何处进行单点CI计算的结果表明, 基态分子中磷原子上的正电荷的相对多少次序与实验测得的摩尔电导率及^3^1P NMR谱的化学位移的相对大小次序完全一致.  相似文献   

5.
Standard bond lengths are proposed for a wide variety of bond lengths involving first row elements. These were obtained as average values from a large number of calculations made at the ab initio molecular orbital 4-31G level with geometry optimization. It is shown that these are generally in good agreement with accurate experimental values, where available.  相似文献   

6.
The estimate of the magnitude and the orientation of molecular electric dipole moments from the vector sum of bond or fragment dipole moments is a widely used approach in chemistry. However, the limitations of this intuitive model have rarely been tested experimentally, particularly for electronically excited states. Herein, we find rules for a number of indole derivatives by using rotationally resolved electronic Stark spectroscopy and ab initio calculations. Based on a natural‐bond‐orbital analysis, we discuss whether the vector additivity rule can be applied in a given electronic state. From a comparison of the experimental data with ab initio calculations, we deduced that the additivity model does not apply when the flow of electron density from the substituent is opposed to that inside the chromophore.  相似文献   

7.
A resonating valence bond electron transfer mechanism of combining two O2 molecules to form an O4 molecule is presented. The predicted molecular states of the reaction path D∞h→C2v→D2h are supported by the present ab initio molecular orbital calculations. The CASPT2 BSSE calculations yield a stable diamagnetic D2h O4 molecule with a very weak chemical bond between the monomers, in good agreement with experiments. A low activation barrier energy of 26 cal/mol for the O4 formation is found.  相似文献   

8.
Standard ab initio molecular orbital theory and density functional theory calculations have been used to calculate absolute one-electron reduction potentials of several para-quinones in acetonitrile. The high-level composite method of G3(MP2)-RAD is used for the gas-phase calculations and a continuum model of solvation, CPCM, has been employed to calculate solvation energies. To compare the theoretical reduction potentials with experiment, the reduction potentials relative to a standard calomel electrode (SCE) have also been calculated and compared to experimental values. The average error of the calculated reduction potentials using the proposed method is 0.07 V without any additional approximation. An ONIOM method in which the core is studied at G3(MP2)-RAD and the substituent effect of the rest of the molecule is studied at R(O)MP2/6-311+G(3df,2p) provides an accurate low-cost alternative to G3(MP2)-RAD for larger molecules.  相似文献   

9.
A novel strategy for the construction of many-electron symmetry-adapted wave function is proposed for ab initio valence bond (VB) calculations and is implemented for valence bond self-consistent filed (VBSCF) and breathing orbital valence bond (BOVB) methods with various orbital optimization algorithms. Symmetry-adapted VB functions are constructed by the projection operator of symmetry group. The many-electron symmetry-adapted wave function is expressed in terms of symmetry-adapted VB functions, and thus the VB calculations can be performed with the molecular symmetry restriction. Test results show that molecular symmetry reduces the computational cost of both the iteration numbers and CPU time. Furthermore, excited states with specific symmetry can be conveniently obtained in VB calculations by using symmetry-adapted VB functions.  相似文献   

10.
Fragment molecular orbital (FMO) method gives a powerful tool to investigate electronic structures for biological substances, and ABINIT-MP program has been developed to implement ab initio FMO calculations effectively. We introduced DFT code into ABINIT-MP and applied fragment-DFT (F-DFT) calculations to model polypeptides. The total accuracy of numerical integrations employed in those calculations was examined by the total numbers of electrons in the molecules. It is shown that the numerical integral of the total density function under the fragment approximation works as an indicator for the numerically total accuracy on the F-DFT implementation.  相似文献   

11.
An empirical potential based on permanent atomic multipoles and atomic induced dipoles is reported for alkanes, alcohols, amines, sulfides, aldehydes, carboxylic acids, amides, aromatics and other small organic molecules. Permanent atomic multipole moments through quadrupole moments have been derived from gas phase ab initio molecular orbital calculations. The van der Waals parameters are obtained by fitting to gas phase homodimer QM energies and structures, as well as experimental densities and heats of vaporization of neat liquids. As a validation, the hydrogen bonding energies and structures of gas phase heterodimers with water are evaluated using the resulting potential. For 32 homo- and heterodimers, the association energy agrees with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond distance from QM optimized geometry is less than 0.06 ?. In addition, liquid self-diffusion and static dielectric constants computed from molecular dynamics simulation are consistent with experimental values. The force field is also used to compute the solvation free energy of 27 compounds not included in the parameterization process, with a RMS error of 0.69 kcal/mol. The results obtained in this study suggest the AMOEBA force field performs well across different environments and phases. The key algorithms involved in the electrostatic model and a protocol for developing parameters are detailed to facilitate extension to additional molecular systems.  相似文献   

12.
The conductance of a family of ruthenium-octene-ruthenium molecular junctions with different pi conjugation are investigated using a fully self-consistent ab initio approach which combines the nonequilibrium Green's function formalism with density functional theory. Our calculations demonstrate that the continuity of the pi conjugation in the contact region as well as along the molecular backbone affects the junction conductance significantly, showing the advantage of using the ruthenium-carbon double bond as the linkage of conjugated organic molecules.  相似文献   

13.
From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I(3) and the single-component molecular conductor [Au(tmdt)(2)]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.  相似文献   

14.
A theoretical model is presented for deriving effective diabatic states based on ab initio valence bond self-consistent field (VBSCF) theory by reducing the multiconfigurational VB Hamiltonian into an effective two-state model. We describe two computational approaches for the optimization of the effective diabatic configurations, resulting in two ways of interpreting such effective diabatic states. In the variational diabatic configuration (VDC) method, the energies of the diabatic states are variationally minimized. In the consistent diabatic configuration (CDC) method, both the configuration coefficients and orbital coefficients are simultaneously optimized to minimize the adiabatic ground-state energy in VBSCF calculations. In addition, we describe a mixed molecular orbital and valence bond (MOVB) approach to construct the CDC diabatic and adiabatic states for a chemical reaction. Note that the VDC-MOVB method has been described previously. Employing the symmetric S(N)2 reaction between NH(3) and CH(3)NH(3)(+) as a test system, we found that the results from ab initio VBSCF and from ab initio MOVB calculations using the same basis set are in good agreement, suggesting that the computationally efficient MOVB method is a reasonable model for VB simulations of condensed phase reactions. The results indicate that CDC and VDC diabatic states converge, respectively, to covalent and ionic states as the molecular geometries are distorted from the minimum of the respective diabatic state along the reaction coordinate. Furthermore, the resonance energy that stabilizes the energy of crossing between the two diabatic states, resulting in the transition state of the adiabatic ground-state reaction, has a strong dependence on the overlap integral between the two diabatic states and is a function of both the exchange integral and the total diabatic ground-state energy.  相似文献   

15.
Accurate force fields are essential for reproducing the conformational and dynamic behavior of condensed-phase systems. The popular AMBER force field has parameters for monophosphates, but they do not extend well to polyphorylated molecules such as ADP and ATP. This work presents parameters for the partial charges, atom types, bond angles, and torsions in simple polyphosphorylated compounds. The parameters are based on molecular orbital calculations of methyldiphosphate and methyltriphosphate at the RHF/6-31+G* level. The new parameters were fit to the entire potential energy surface (not just minima) with an RMSD of 0.62 kcal/mol. This is exceptional agreement and a significant improvement over the current parameters that produce a potential surface with an RMSD of 7.8 kcal/mol to that of the ab initio calculations. Testing has shown that the parameters are transferable and capable of reproducing the gas-phase conformations of inorganic diphosphate and triphosphate. Also, the parameters are an improvement over existing parameters in the condensed phase as shown by minimizations of ATP bound in several proteins. These parameters are intended for use with the existing AMBER 94/99 force field, and they will permit users to apply AMBER to a wider variety of important enzymatic systems.  相似文献   

16.
Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.  相似文献   

17.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

18.
An empirical potential energy function has been devised for the O-H·O hydrogen bond, for use with the MMI force field. The energy of the hydrogen bond is described as the sum of van der Waals, electrostatic and Morse components. The function has been used to calculate the potential energy hypersurface of the water dimer, and the results are compared with published ab initio molecular orbital studies. Satisfactory agreement is obtained except for orientations involving very short H·H contacts. The geometry and hydrogen bond energy of the equilibrium linear form of (H2O)2 are calculated to be r(O·O) = 2.84 Å, θ = 36°, ΔE = ?5.35 kcal mol?1, which are close to the values obtained by experiment, and from molecular orbital calculations. The relative importance of the electrostatic component of the empirical hydrogen bond energy is consistent with molecular orbital energy decomposition studies. The empirical function has also been used to calculate the energy of the water trimer in orientations which serve as models for the crystallographic bifurcated hydrogen bond. The results indicate that, in these orientations, the trimer is typically 0–3 kcal mol?1 more stable than the dimer, a result which is consistent with ab initio calculations.  相似文献   

19.
Hydrogen abstraction reactions of the type X(*) + H-H' --> X-H + H'(*) (X = F, Cl, Br, I) are studied by ab initio valence bond methods and the VB state correlation diagram (VBSCD) model. The reaction barriers and VB parameters of the VBSCD are computed by using the breathing orbital valence bond and valence bond configuration interaction methods. The combination of the VBSCD model and semiempirical VB theory leads to analytical expressions for the barriers and other VB quantities that match the ab initio VB calculations fairly well. The barriers are influenced by the endo- or exothermicity of the reaction, but the fundamental factor of the barrier is the average singlet-triplet gap of the bonds that are broken or formed in the reactions. Some further approximations lead to a simple formula that expresses the barrier for nonidentity and identity hydrogen abstraction reactions as a function of the bond strengths of reactants and products. The semiempirical expressions are shown to be useful not only for the model reactions that are studied in this work, but also for other nonidentity and identity hydrogen abstraction reactions that have been studied in previous articles.  相似文献   

20.
We present an extension of the molecular mechanics-valence bond (MMVB) hybrid method to study ground and excited states of planar conjugated hydrocarbon cations. Currently, accurate excited state calculations on these systems are limited to expensive ab initio studies of smaller systems: up to 15 active electrons in 16 pi orbitals with complete active space self-consistent field (CASSCF) theory using high symmetry. The new MMVB extension provides a faster, cheaper treatment to investigate larger cation systems with more than 24 active orbitals. Extension requires both new matrix elements and new parameters: In this paper we present both, for the limited planar case. The scheme is tested for the planar radical cations of benzene, naphthalene, anthracene, and phenanthrene. Calculated MMVB relative energies are in good agreement with CASSCF results for equilibrium geometries on the ground and first excited states, and conical intersections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号