首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the mode-dependent transmission probability of massless Dirac fermions through an ideal strip of graphene (length L, width W, no impurities or defects) to obtain the conductance and shot noise as a function of Fermi energy. We find that the minimum conductivity of order e2/h at the Dirac point (when the electron and hole excitations are degenerate) is associated with a maximum of the Fano factor (the ratio of noise power and mean current). For short and wide graphene strips the Fano factor at the Dirac point equals 1/3, 3 times smaller than for a Poisson process. This is the same value as for a disordered metal, which is remarkable since the classical dynamics of the Dirac fermions is ballistic.  相似文献   

2.
We have investigated shot noise in graphene field effect devices in the temperature range of 4.2-30 K at low frequency (f=600-850 MHz). We find that for our graphene samples with a large width over length ratio W/L, the Fano factor F reaches a maximum F ~ 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.  相似文献   

3.
Because of Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g., quantum dots or quantum point contacts.  相似文献   

4.
We study the interaction of electrons in graphene with the quantized electromagnetic field in the presence of an applied uniform electric field using the Dirac model of graphene. Electronic states are represented by exact solutions of the Dirac equation in the electric background, and amplitudes of first-order Feynman diagrams describing the interaction with the photon field are calculated for massive Dirac particles in both valleys. Photon emission probabilities from a single electron and from a many-electron system at the charge neutrality point are derived, including the angular and frequency dependence, and several limiting cases are analyzed. The pattern of photon emission at the Dirac point in a strong field is determined by an interplay between the nonperturbative creation of electron–hole pairs and spontaneous emission, allowing for the possibility of observing the Schwinger effect in measurements of the radiation emitted by pristine graphene under DC voltage.  相似文献   

5.
The control of the graphene electronic structure is one of the most important problems in modern condensed matter physics. The graphene monolayer synthesized on the Re(0001) surface and then subjected to the intercalation of Pb atoms is studied by angle-resolved photoelectron spectroscopy and low-energy electron diffraction. The intercalation of Pb atoms under graphene takes place when the substrate is annealed above 500°C. As a result of the intercalation of Pb atoms, graphene becomes quasi-free-standing and a local band gap appears at the Dirac point. The band gap changes with the substrate temperature during the formation of the graphene/Pb/Re(0001) system. The band gap is 0.3 eV at an annealing temperature of 620°C and it increases up to 0.4 eV upon annealing at 830°C. Based on our data, we conclude that the band gap is mainly caused by the hybridization of the graphene π state with the rhenium 5d states located near the Dirac point of the graphene π state.  相似文献   

6.
李传新  汪萨克  汪军 《中国物理 B》2017,26(2):27304-027304
We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤ 3?(? is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥ 5?.The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.  相似文献   

7.
We study the energy band structure of magnetic graphene superlattices with delta-function magnetic barriers and zero average magnetic field. The dispersion relation obtained using the T-matrix approach shows the emergence of an infinite number of Dirac-like points at finite energies, while the original Dirac point is still located at the same place as that for pristine graphene. The carrier group velocity at the original Dirac point is isotropically renormalized, but at finite energy Dirac points it is generally anisotropic. An asymmetry in the width between the wells and the barriers of the periodic potential induces a shift of the original Dirac point in the zero-energy plane, keeping the velocity renormalization isotropic.  相似文献   

8.
The proposed scheme for the consideration of charge transfer in the three-layer Gr/Me/SiC system (where Gr is a single-sheet graphene, Me is an intercalated metal layer, and SiC is a substrate) contains three stages. At the first stage, a metal monolayer adsorbed on silicon carbide is considered and the charge of adatoms in this monolayer is calculated. At the second stage, the shift of the Dirac point of free-standing single-layer graphene in an electrostatic field induced by charged adatoms of the monolayer is estimated. At the third stage, a weak interaction between Me/SiC and free-standing graphene is included, which allows electrons to tunnel but does not significantly distort the density of states of free-standing graphene. Estimations are performed for n- and p-type 6H-SiC(0001) substrates and Cu, Ag, and Au layers. The charge state of the graphene sheet and the shift of the Dirac point with respect to the Fermi level of the system are calculated. A comparison with the available experimental and theoretical results shows that the proposed scheme works quite satisfactorily.  相似文献   

9.
The tight-binding electrons in graphene grown on top of hexagonal boron nitride (h-BN) substrate are studied. The two types of surfaces on the h-BN substrate give rise to Dirac fermions having positive and negative masses. The positive and negative masses of the Dirac fermions lead to the gapped graphene to behave as a “pseudo” ferromagnet. A very large (pseudo) tunneling magnetoresistance is predicted when the Fermi level approaches the gap region. The energy gap due to the breaking of sublattice symmetry in graphene on h-BN substrate is analogous to magnetic-induced energy gap on surface of topological insulators. We point out that positive and negative masses may correspond to signs of magnetic-like field perpendicular to graphene sheet acting on pseudo magnetic dipole moment of electrons, leading to pseudo-Larmor precession and Stern–Gerlach magnetic force.  相似文献   

10.
A new transport regime of photon in two-dimensional photonic crystal near the Dirac point has been demonstrated by exact numerical simulation. In this regime, the conductance of photon is inversely proportional to the thickness of sample, which can be described by Dirac equation very well. Both of bulk and surface disorders always reduce the transmission, which is in contrast to the previous theoretical prediction that they increase the conductance of electron at the Dirac point of graphene. However, regular tuning of interface structures can cause the improvement of photon conductance. Furthermore, large conductance fluctuations of photon have also been observed, which is similar to the case of electron in graphene.  相似文献   

11.
By numerical diagonalization of honeycomb-lattice tight-binding Hamiltonian we calculate the density of state (DOS) of irregularly shaped graphene quantum dots fabricated in the form of graphene nano-flakes. The finite-size electron confinement and the edge states result in the central peak of DOS that is located at the zero-energy Dirac point. The amplitude and width of the peak are provided by the form of the graphene cluster, but no regular correlation with its shape was found.  相似文献   

12.
We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlattices with electrostatic barriers and magnetic vector potentials.It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged wave number.The magnetic and electric potentials modify the energy band structure and transmission spectrum in entirely diverse ways.In addition,the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states.The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.  相似文献   

13.
Gap opening at the Dirac point of the single-layer graphene with periodic scalar and vector potentials has been theoretically investigated under the continuum model. The symmetry analysis indicates that the two-fold degeneracy at the Dirac point can be lifted when the potentials break both the chiral symmetry and the time-reversal symmetry. With the perturbation theory, we derive an analytical expression (gap equation) for gap opening at the Dirac point. Furthermore, the bandgap from the gap equation agrees well with the exact result, when the applied potentials are weak.  相似文献   

14.
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.  相似文献   

15.
In this Letter graphene normal-superconductor-normal heterostructures are modeled for studying the crossed Andreev reflection. A thin layer of undoped graphene with Fermi energy at the Dirac point at is assumed the interface between superconductor layer and each normal lead. The resulting contribution of the crossed Andreev reflection to the nonlocal conductance equals that of the electron elastic cotunneling. We explain this as another figure of merit for pseudodiffusive conduction at the Dirac point of the undoped layers. Also structures with only one undoped layer at the interface between the superconductor and one of the normal leads, as well as structures in which one of the leads is ferromagnetic, show pseudodiffusive conduction at the Dirac points.  相似文献   

16.
The four-terminal impedance is studied in a typical graphene nanoribbon based structure. When two additional voltage probes are attached, the results show that at the Dirac point, both the real and imaginary parts of the impedance are negative. As the Fermi energy deviates from the Dirac point, the real part of impedance oscillates with its sign changing frequently, while the imaginary part becomes vanishingly small. The phase incoherent processes introduced by the voltage probes contribute to inelastic scattering and charge redistribution in the central device region. As a result, the measured conductance is substantially different from the two-terminal measurement of a perfect graphene nanoribbon, indicating the important role of voltage probes in realistic four-terminal measurement.  相似文献   

17.
Renormalization is one of the basic notions of condensed matter physics. Based on the concept of renormalization, the Landau’s Fermi liquid theory has been able to explain, why despite the presence of Coulomb interactions, the free electron theory works so well for simple metals with extended Fermi surface (FS). The recent synthesis of graphene has provided the condensed matter physicists with a low energy laboratory of Dirac fermions where instead of a FS, one has two Fermi points. Many exciting phenomena in graphene can be successfully interpreted in terms of free Dirac electrons. In this paper, employing dynamical mean field theory (DMFT), we show that an interacting Dirac sea is essentially an effective free Dirac theory. This observation suggests the notion of Dirac liquid as a fixed point of interacting 2 + 1 dimensional Dirac fermions. We find one more fixed point at strong interactions describing a Mott insulating state, and address the nature of semi-metal to insulator (SMIT) transition in this system.  相似文献   

18.
We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the Dirac point giving rise to highly anisotropic Dirac cones. We further find that the cluster superlattice also affects the spectral-weight distribution of the carbon bands as well as the electronic gaps between graphene states.  相似文献   

19.
A strong substrate-graphite bond is found in the first all-carbon layer by density functional theory calculations and x-ray diffraction for few graphene layers grown epitaxially on SiC. This first layer is devoid of graphene electronic properties and acts as a buffer layer. The graphene nature of the film is recovered by the second carbon layer grown on both the (0001) and (0001[over]) 4H-SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. Hence the graphene is doped and a gap opens at the Dirac point after three Bernal stacked carbon layers are formed.  相似文献   

20.
《Physics letters. A》2014,378(18-19):1321-1325
The transport properties of graphene/metal (Cu(111), Al(111), Ag(111), and Au(111)) planar junction are investigated using the first-principles nonequilibrium Green's function method. The planar junction induce second transmission minimum (TM2) below the Fermi level due to the existence of the Dirac point of clamped graphene. Interestingly, no matter the graphene is p- or n-type doped by the metal substrate, the TM2 always locates below the Fermi level. We find that the position of the TM2 is not only determined by the doping effect of metal lead on the graphene, but also influenced by the electrostatic potential of the metal substrate and the work function difference between the clamped and suspended graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号