首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantum mechanical force fields (QMFF's) of 3,3-dimethyl-1-(tert-butyl)cyclopropene (I), 3,3-dimethyl-1-(trimethylsilyl)cyclopropene (II), 3,3-dimethyl-1-(trimethylgermyl)cyclopropene (III), and 3,3-dimethyl-1-(trimethylstannyl)cyclopropene (IV) were calculated at the HF/3-21G*//HF/3-21G* level. The set of scale factors for the correction of HF/3-21G*//HF/3-21G* QMFF of II was determined using its well-characterised vibrational spectrum. Transferral of the set of scale factors obtained for II to the QMFF's of I, III and IV and calculation of the fundamental frequencies resulted in good agreement between the calculated and previously assigned experimental frequencies of III. This again demonstrates the feasibility of transferral of a set of scale factors obtained for the correction of the QMFF of a molecule to others containing heteroatoms from the same column of the Mendeleyev Periodic Table. Thus the calculations performed permitted the accurate assignment of the fundamental vibrational frequencies in the experimental IR spectrum of IV. The vibrational frequencies of 3,3-dimethyl-1-(tert-butyl)cyclopropene (I) were also calculated from the HF/6-31G*//HF/6-31G* QMFF, scaled by the set of scale factors used previously for the HF/6-31G*//HF/6-31G* QMFF's of II and III. Regularities in the trends of some vibrational frequencies with increasing atomic number of the heteroatom are observed.  相似文献   

2.
The experimental Raman and IR vibrational spectra of 3,3-dimethyl-1-(trimethylsilyl)cyclopropene in the liquid phase were recorded. Total geometry optimisation was carried out at the HF/6-31G* level and the HF/6-31G*//HF/6-31G* force field was computed. This force field was corrected by scale factors determined previously (using Pulay's method) for correction of the HF/6-31G*//HF/6-31G* force fields of 3,3-dimethylbutene-1, 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The theoretical vibrational frequencies calculated from the scaled quantum mechanical force field and the theoretical intensities obtained from the quantum mechanical calculation were used to construct predicted spectra and to perform the vibrational analysis of the experimental spectra.  相似文献   

3.
The geometrical parameters of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene were optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using Pulay's scaling procedure. The set of 17 scale factors (for a 105-dimensional problem) was compiled from the sets obtained previously for 3,3-dimethyl-1-butene and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The vibrational problem was solved using the scaled quantum mechanical force field (QMFF) and assignments of the vibrational frequencies of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene were considered in comparison with the known assignments of 3,3-dimethyl-1-butene and 3,3-dimethylcyclopropene. Assignments of four experimental IR bands of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene given in the literature are suggested.  相似文献   

4.
The geometrical parameters and quantum mechanical force fields (QMFF's) of 3,3-dimethyl-1-(trimethylplumbyl)cyclopropene (I), 3,3-dimethyl-1-(t-butyl)cyclopropene (II), 3,3-dimethyl-1-(trimethylsilyl)cyclopropene (III), 3,3-dimethyl-1-(trimethylgermyl)cyclopropene (IV), and 3,3-dimethyl-1-(trimethylstannyl)cyclopropene (V) were calculated at the pseudopotential (HF/SDDAll) level. Analysis of the optimised geometrical parameters was performed. The set of scale factors for correction of the pseudopotential QMFF of III was determined using its earlier well-characterised vibrational spectrum. Transferral of the set of scale factors obtained for III to the QMFF's of I, II, IV and V was followed by calculation of the fundamental vibrational frequencies. Analysis of the results for these molecules revealed some peculiarities in the vibrational frequencies obtained at the pseudopotential level.  相似文献   

5.
3,3-dimethyl-1-(trimethylgermyl)cyclopropene (I) was synthesised using a standard procedure. The IR and Raman spectra of I in the liquid phase were measured. The molecular geometry of I was optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using the set of scale factors transferred from those determined previously for scaling the theoretical force fields of 3,3-dimethylbutene-1 and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The assignments of the observed vibrational bands were performed using the theoretical frequencies calculated from the scaled HF/6-31G*//HF/6-31G* force field and the ab initio values of the IR intensities, Raman cross-sections and depolarisation ratios. The theoretical spectra are given. The completely optimised structural parameters of I and its vibrational frequencies are compared with corresponding data of related molecules.  相似文献   

6.
The infrared (IR) and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylgermyl)cyclopropene (I) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors comprised of elements transferred from the sets used to correct the QMFF's of 3,3-dimethylbutene-1, and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene (17 scale factors for a 105-dimensional problem). This set of scale factors was used previously to correct the QMFF of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene. The scaled QMFF obtained was used to solve the vibrational problem. Differential Raman cross-sections were calculated using the quantum mechanical values of the Raman activities. The appropriate theoretical spectrograms for the Raman and IR spectra of I were constructed. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distributions and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values calculated using the unscaled QMFF.  相似文献   

7.
The IR and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene (I) (synthesised using standard procedures) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors used previously for 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene (17 scale factors for a 105-dimensional problem). The scaled QMFF obtained was used to solve the vibrational problem. The quantum mechanical values of the Raman activities were converted to differential Raman cross sections. The figures for the experimental and theoretical Raman and IR spectra are presented. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distribution and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values (including Raman cross sections) calculated using the unscaled QMFF.  相似文献   

8.
The effects of substitution of X = C by Si or Ge in X(CH(3))(3) moieties attached to the formal double bond of 3,3-dimethylcyclopropene are examined. Regularities in observed trends of vibrational frequencies implicating the moieties containing the X atom, as the X atomic mass is increased, are extrapolated to X = Sn. The results of this extrapolation made it possible to assign the known experimental vibrational frequencies of 3,3-dimethyl-1-(trimethylstannyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylstannyl)cyclopropene.  相似文献   

9.
The synthesis of 1,2-di-tert-butyl-3,3-dimethylcyclopropene (I) is performed and its IR and Raman spectra are measured. Optimized geometries of I are obtained at the HF/6-31G* and CCSD/cc-pVDZ levels. The ab initio calculated spectra are used for the assignments of the experimental spectral data. The results obtained are compared with the corresponding data for 3,3-dimethylbut-1-ene and 3,3-dimethylcyclopropene. These experimental data and the total vibrational analysis of I supplement the information obtained in the series of investigations of tert-butyl, trimethylsilyl, trimethylgermyl, trimethylstannyl, and trimethylplumbyl derivatives of 3,3-dimethylcyclopropene.  相似文献   

10.
Theoretical spectrograms of the vibrational spectrum of 3,3-dimethylcyclopropene were constructed and juxtaposed with the experimental Raman and IR spectrograms. The theoretical spectrograms are represented as sets of vertical lines starting from the points corresponding to the values of the vibrational frequencies calculated from the scaled quantum-mechanical (QM) force field obtained at the HF/6-31G*//HF/6-31G* level. Two theoretical Raman spectrograms were constructed. In the first case, the heights of the vertical lines correspond to the QM values of the Raman scattering activities. In the second case they represent the relative differential Raman cross-sections calculated using the QM values of Raman scattering activities. The initial vibrational mode matrix remains virtually unchanged upon scaling of the QM force constant matrix because the dispersion of the scale factor values is low. Therefore, the heights of the theoretical lines for the IR spectrogram represent the QM intensities directly. The theoretical spectrogram based on the relative differential Raman cross-sections was shown to depict the experimental Raman spectrum more adequately. This makes it possible to use the results of the corresponding QM calculations more completely and obtain well-substantiated assignments of the vibrational frequencies.  相似文献   

11.
Quantum mechanical geometry optimizations and the calculation of vibrational frequencies of hexafluoroethane have been performed at the HF/6-31G*, MP2/6-31G*, CCSD/cc-pVDZ, and B3LYP/6-31G* levels. The force fields obtained were scaled. The necessity is stressed of carrying out the detailed analysis of the vibrational spectra of small reference molecules to determine sets of scale factors which are transferable to quantum mechanical force fields of large molecules for the purpose of predicting their vibrational spectra.  相似文献   

12.
用从头算方法HF/6-31G^*^*和密度函方法B3LYP/6-31G^*^*,对Si~2Cl~6分子的平衡几何构型进行优化,优化的结果与实验结果吻合得较好.并用上述两种不同的方法计算Si~2Cl~6分子的内旋转能垒,结果分别为8.786和6.694kJ/mol,其中DFT方法的计算结果与实验结果4.18kJ/mol吻合得较好.对Si~2Cl~6分子的振动基频进行计算.用HF/6-31G^*^*SQM力场所计算的频率理论值与实验值的平均误差为7.3cm^-^1,用B3LYP/6-31G^*^*未标度的力场所计算的频率理论值与实验值的平均误差为6.0cm^-^1.该密度泛函方法(B3LYP/~6-31G^*^*)的理论计算值比用HF/6-31G^*^*标度后的SQM力场计算的频率与实验值(除Si--Si键扭转振动基频之外的11条振动基频)吻合得更好.并给出了Si--Si键扭转振动基频的预测值。  相似文献   

13.
FC(O)NCS 分子振动光谱的理论研究   总被引:2,自引:0,他引:2  
采用DFT(B3LYP)方法,以6-3G*为基组对FC(O)NCS的顺式和反式两种构型的几何结构,振动谐性力场和红外光谱进行了研究。B3LYP/6-31G*计算水平和大多数有机分子的一套固定标度因子进行标度。根据标度后的理论力场进行简正坐标分析得到的势能分布(PED)和红外光谱强度值对FC(O)NCS分子的顺式和反式两种构型的振动基频进行了理论归属。  相似文献   

14.
The laser-excited Raman spectra of liquid CH3SiClnBr3?n (n = 0, 1, 2) were studied. Quantumchemical calculations of these substances with geometry optimization were performed to determine their harmonic force fields and vibrational frequencies. The calculations were made using the HF/6-31G* and HF/6-311++G** approximations and density functional theory at the B3LYP/6-31G* and B3LYP/6-311++G** levels. An interpretation of the spectra was suggested and the calculated force fields were discussed in comparison with the data on related compounds.  相似文献   

15.
The structures and relative stabilities of furoxan and some of its isomers, e.g., the 1,2-dinitrosoethylenes, have been determined by means of ab initio Hartee–Fock and Møller–Plesset calculations. Geometries were optimized at the HF/3-21G, HF/6-31G* and MP2/6-31G* levels, and subsequently used for computing MP2/6-31G*, MP3/6-31G*, and MP4/6-31G* energies. The results are markedly affected by the inclusion of electronic correlation, which renders three of the isomers unstable. It also emphasizes the importance of a zwitterionic contribution to the structure of furoxan, which promotes ring-opening through a cis 1,2-dinitrosoethylene intermediate/transition state that has an MP4/6-31G*//MP2/6-31G* energy that is 31.6 kcal/mol above furoxan.  相似文献   

16.
采用HF和DFT(B3LYP)方法及6-31G基组对N-萘基氨基甲酸甲酯的几何构型、振动谱性力场和红外光谱进行了研究,使用Pulay标度法对HF/6-21G和B3LYP/6-31G的理论力场进行标度。根据标度后的理论力场进行了简正坐标分析,得到势能分布和红外振动频率,与红外频率实验相比较,HF方法和DFT(B3LYP)方法的误差分别为37.8cm^-^1和8.68cm^-^1,此外,还根据B3LYP方法得到的势能分布和红外光谱强度对N-萘基氨基甲酸甲酯的振动基频进行了理论归属,并对前人的频率指认进行了修正和补充。  相似文献   

17.
The 3,3-dimethyl-3-silathiane molecule was studied by gas-phase electron diffraction and vibrational spectroscopy. The initial geometrical parameters and the force field were calculated by the B3LYP/6-311+G** method; the vibrational amplitudes of atomic pairs and vibrational corrections were calculated using the scaled B3LYP/6-311+G** force field. The molecular conformation was found to be a distorted chair with structural parameters close to the expected ones.  相似文献   

18.
Si2Br6的分子振动光谱的理论研究   总被引:1,自引:1,他引:0  
用量化从头算方法(HF/6-31G*)和密度泛函方法(B3LYP/6-31G*)以6-31G标准基组加一个极化函数,对Si2Br6分子的平衡几何构型和振动频率分别进行优化和计算,优化的结果与实验结果吻合得较好.按照Pulay的建议对HF/6-31G*水平上所计算的谐性力场进行标度(标度因子取0.9).用HF/6-31G*SQM力场所计算的基频预测值和实验值的平均误差为9.4cm-1,最大误差为23.6cm-1;用B3LYP/6-31G*未标度力场所计算的基频预测值和实验值的平均误差为8.6cm-1,最大误差为16.6cm-1;用该密度泛函方法所计算的基频预测值比用HF/6-31G*的标度后的SQM力场所计算的基频预测值和实验值(除Si-Si键扭转振动基频之外的11条振动基频)吻合得更好.HF/6-31G*和B3LYP/6-31G*计算给出Si-Si键扭转振动基频的预测值分别为14cm-1和9cm-1.  相似文献   

19.
The geometries of four isomers of the trimethylsilyl substituted phthalocyanine (Pc)— I , II , III , and IV —have been optimized at the B3LYP/3‐21G level of density functional theory. Normal‐mode vibrational analyses have been performed and their standard thermodynamic functions, molar fractions, and electronic absorption spectra calculated. Single‐point energies have been calculated at the B3LYP/6‐311G* level for all isomers to evaluate the heats of formation from an isodesmic reaction. It is found that substitution has little influence on the geometry and electronic structures of the Pc framework. The corresponding geometric parameters in various isomers are close. According to the B3LYP/6‐311G*//B3LYP/3‐21G results, substitution at the peripheral position of the isoindole with an inner hydrogen is most favorable. The energies increase in the order of IV < II < III < I , and the energy difference between IV and I is 5.75 kJ/mol. The molar fractions of IV , II , III , and I are 0.80, 0.17, 0.02, and 0.02 and the heats of formation are 2009.96, 2010.10, 2015.85, and 2016.52 kJ/mol, respectively. This indicates that nonperipheral substituted Pcs have higher energy and little production because they are not stable under the considered conditions. The electronic spectra of the substituted Pcs calculated using the ZINDO method have two strong Q absorption bands around 700 nm and one B band around 300 nm that are slightly shifted compared with those in Pc. The ratios of the oscillator strength of the B band to the Q bands are much lowered by trimethylsilyl substitution. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

20.
ThefluorosulfonylisocyanateandchlorosulfonylisocyanatemoleculesarethemostreactivemoleculesforthetransferenceoftheNCOgroupandareveryimportantinsyntheticchemistry.Duetotheirversatilityinchemicalreactions,theyhavealsobecomethesubjectofmanystructuralstudi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号