首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In [1], under the condition that all the perfectly plastic stress components at a crack tip are functions of ϕ only, making use of equilibrium equations, stress-strain rate relations, compatibility equations and yield condition. Lin derived the general analytical expressions of the perfectly plastic stress field at a mixed-mode crack tip under plane and anti-plane strain. But in [1] there were several restrictions on the proportionality factor γ in the stress-strain rate relations, such as supposing that γ is independent of ϕ and supposing that γ=c or cr−1. In this paper, we abolish these restrictions. The cases in [1], γ=crd (n=0 or-1) are the special cases of this paper.  相似文献   

2.
3.
Processing the capillary viscometry data of fluids with yield stress   总被引:1,自引:0,他引:1  
The capillary viscometer is used to measure the shear stress-shear rate relationship of a wide range of purely viscous fluids. It is however not considered as an appropriate instrument for obtaining the yield stress and the post-yield behaviour of fluids that have a yield stress. This is partly because conventional methods of processing the capillary viscometry data of purely viscous fluids cannot be applied to similar data of fluids with yield stress. The unavoidable experimental noise in the capillary data, particularly at low shear rates, also makes it difficult to obtain a reliable estimate of the yield stress from capillary data. In this investigation the problem of converting the capillary viscometry data of yield stress fluids into a shear stress-shear rate curve and a yield stress is formulated as a Volterra integral equation of the first kind. This is an ill-posed problem i.e. noise in the data will be amplified by inappropriate methods of data processing. A method, based on Tikhonov regularisation that takes into account the ill-posed nature of the problem, is then developed to solve this problem for fluids with yield stress. The performance of this method is assessed by applying it to a set of “synthetic” capillary viscometry data with added random noise and to a set of experimental data for a concentrated suspension of TiO2 taken from the literature. In both cases Tikhonov regularisation was able to extract the complete shear properties of these fluids from capillary viscometry data alone. Received: 22 November 1999/Accepted: 17 December 1999  相似文献   

4.
This paper investigates the capabilities of several non-quadratic polynomial yield functions to model the plastic anisotropy of orthotropic sheet metal (plane stress). Fourth, sixth and eighth-order homogeneous polynomials are considered. For the computation of the coefficients of the fourth-order polynomial an improved set of analytic formulas is proposed. For sixth and eighth-order polynomials the identification uses optimization. Simple constraints on the optimization process are shown to lead to real-valued convex functions. A general method to extend the above plane stress criteria to full 3D stress states is also suggested. Besides their simplicity in formulation, it is found that polynomial yield functions are capable to model a wide range of anisotropic plastic properties (e.g., the Numisheet’93 mild steel, AA2008-T4, AA2090-T3). The yield functions have then been implemented into a commercial finite element code as constitutive subroutines. The deep drawing of square (Numisheet’93) and cylindrical (AA2090-T3) cups have been simulated. In both cases excellent agreement with experimental data is obtained. In particular, it is shown that non-quadratic polynomial yield functions can simulate cylindrical cups with six or eight ears. We close with a discussion on earing and further examples.  相似文献   

5.
Bentonite clay is a vital ingredient of drilling mud. The time-dependent and high shear thinning yield stress behaviour of drilling mud is essential for maintaining wellbore stability and to remove cuttings, cool and clean the drill bit of debris. As-prepared 3, 5 and 7 wt.% bentonite clay slurries displayed time-dependent behaviour where the yield stress (measured after quick stirring) decreased with time of rest. An equilibrium value is reached after 24 h. Despite the low solids concentration, the yield stress is already relatively high and is displayed at all pH level. The yield stress is maximum at pH 2 and minimum at pH ∼ 7. This yield stress is due to the formation of gel structure by the swelling clay particles. However the addition of phosphate additives such as (PO3)19 − , (P3O10)5 −  and (P2O7)4 −  completely dispersed the clay slurries at pH above 6. At pH below 6, yield stress is still present but is 3-folds smaller than that of the pure bentonite slurry. With phosphate additives, the magnitude of the critical zeta potential at the complete dispersion pH is ca 48 mV. However for the pure bentonite, the slurry remained flocculated at zeta potential of >50 mV in magnitude. Interestingly, (P2O7)4 −  anions is more effective than the other two phosphate additives in reducing the yield stress at low pH, ∼ 2.0.  相似文献   

6.
等几何分析(IGA)将非均匀有理B样条(NURBS)函数作为有限元形函数,具有几何精确、高阶连续和精度高等优点。与常规有限元法C0连续的形函数不同,高阶IGA基函数不是定义在一个单元上,而是跨越由几个单元组成的参数空间,因而编程复杂且无法嵌入现有的有限元法计算框架及相应算法。本文建立了基于Bézier提取的三维IGA,将NURBS函数分解成伯恩斯坦多项式的线性组合,从而实现把NURBS单元分解为C0连续Bézier单元,这些单元与Lagrange单元相似,使IGA的实现和常规有限元一样,以便将IGA分析嵌入现有的有限元软件中。两个三维算例结果表明,基于Bézier提取的IGA和传统IGA的收敛性和精度相同。  相似文献   

7.
Various structured fluids were placed between the parallel circular plates of a squeeze-flow rheometer and squeezed by a force F until the fluid thickness h was stationary. Fluid thickness down to a few microns could be measured. Most fluids showed two kinds of dependence of f on h according to an experimentally-determined thickness h *. If h > h * then F varied in proportion to h −1 as predicted by Scott (1931) for a fluid with a shear yield stress τ0. The magnitude of τ0 from squeeze-flow data in this region was compared with the yield stress measured by the vane method. For some fluids τ0 measured by squeeze flow was less than the vane yield stress, suggesting that the yield stress of fluid in contact with the plates was less than the bulk yield stress. If h < h * then F varied approximately as h −5/2 and the squeeze-flow data in this region analysed with Scott's relationship gave a yield stress which increased as the fluid thickness decreased. This previously unreported effect may result from unconnected regions of large yield stress in the fluid of size similar to h * which are not sensed by the vane and which become effective in squeeze flow only when h < h *. Received: 13 December 1999/Accepted: 4 January 2000  相似文献   

8.
This paper shows that pressure drop-flow rate performance of an electrorheological (ER) fluid flowing through a packed bed of glass beads is consistent with a modified Ergun equation for yield stress flow through a packed bed. ER fluids are of scientific and engineering interest due to the sensitivity of their rheological properties on the applied electric field. As far as we know ER fluids have not been studied for flows through porous media. In this work a silica particle–silicone oil suspension is pumped through a rectangular packed bed of glass beads with applied electric fields. The silica particles are observed to form fibrous structures parallel to the electric field that stretch between the beads and extend between the electrodes. The pressure drop-flow rate performance agrees well with the expected performance calculated from a modified Ergun equation for a yield stress fluid flow through the packed bed with the viscosity and yield stress as functions of the applied electric field.  相似文献   

9.
IntroductionIngeneral,thekinematicalhardeningbehaviorofmaterialsisdescribedbyavariablecaledbackstresorshifttensor.Itsvaluerep...  相似文献   

10.
 In this paper, the results from a series of rheological tests of fresh pig kidney have been reported. Using a standard strain-controlled rheometer, the oscillation strain sweep experiment showed a linear viscoelastic strain limit of the order of 0.2% strain. To determine the components of dynamic moduli in terms of frequency, shear oscillation tests were done at strain 0.2% using a stress-controlled rheometer. Shear stress relaxation tests were carried out with a fixed strain of 0.2% and 0.02 s rise time. The model we have developed uses a multi-mode upper convected Maxwell (UCM) model with variable viscosities and time constants, to which we have added a Mooney hyper-elastic response, both multiplied by a damping function. Different forms of damping functions that control the non-linearity of strain-stress profile have been tested. The model was fitted to our experimental data, and matched the entire test data reasonably well with a single set of parameters. Received: 5 May 2000 Accepted: 16 March 2001  相似文献   

11.
Amixed-mode (I + II) crack model with a plastic strip on its continuation is proposed. The three unknown stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition  相似文献   

12.
Experiments are described in which a constant force F squeezed a fluid, either between two parallel circular plates, or between a plate and convex spherical lens. Newtonian fluids obeyed the relation of Stefan (1874) for plates, and the relation of Adams et al. (1994) for plate and lens. The non-Newtonian yield stress fluids Brylcreem, Laponite and Sephadex were squeezed between plates of various diameter D to attain a stationary separation h. Only for separations greater than h * (which depended on the fluid) did Brylcreem and Laponite obey the relation F/D 3 ∝ h −1 of Scott (1931) and give a yield stress in agreement with the vane method. For Sephadex the dependence of F/D 3 on h disagreed with Scott's relation, but varied as h −5/2 for h > 0.6 mm and h −3/2 for h < 0.6 mm. On rotating one plate in its plane the yield stress fluids at a fixed F suffered a marked decrease of h. This, and the existence of h *, are discussed in terms of the soft glassy material model of Sollich et al. (1997) and Sollich (1998). Brylcreem and Laponite were squeezed between a plate and lenses of various curvature and their yield stress obtained using the relation of Adams et al. (1994) was compared with measurements by plate-plate squeeze-flow and vane methods. Received: 12 April 2000 Accepted: 26 October 2000  相似文献   

13.
The solution of the Saint-Venant’s Problem for a slender compound piezoelectric beam presented in this paper generalizes the recent solution by the authors and E. Harash (J. Appl. Mech. 11:1–10, 2007) for a homogeneous piezoelectric beam and the solution for a compound elastic beam developed by O. Rand and the first author (Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools, Birkhauser, Boston, 2005). Justification for this approximation emerges from the St. Venant’s Principle. The stress, strain and (electrical) displacement components (“solution hypothesis”) are presented as a set of initially assumed expressions involving twelve tip loading parameters, six unknown weight coefficients, and three pairs of torsion/bending functions of two variables. Each pair of functions satisfies the so-called coupled non-homogeneous Neumann problem (CNNP) in the cross-sectional domain. The work develops concepts of the torsion/bending functions, the torsional rigidity and piezoelectric shear center, the tip coupling matrix, for a compound piezoelectric beam. Examples of exact and approximate solutions for rectangular laminated beams made of transtropic materials are presented.   相似文献   

14.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

15.
In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project’s limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB.  相似文献   

16.
A mixed-mode (I + II) crack model with a plastic strip on its continuation under plane strain is proposed. The stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition. In the quasibrittle case, the governing system of equations includes stress intensity factors K I, K II, and T-stresses  相似文献   

17.
Relatively few correlations are available for non-Newtonian fluid flows through packed beds, even though such fluids are frequently used in industry. In this paper, a correlation is presented for yield stress fluid flow through packed beds. The correlation is developed by introducing the yield stress model in place of the Newtonian model used in deriving Erguns equation. The resulting model has three parameters that are functions of the geometry and roughness of the particle surfaces. Two of the parameters can be deduced in the limit as the yield stress becomes negligible and the model reduces to Erguns equation for Newtonian fluids. The third model parameter is determined from experimental data. The correlation relates a defined friction factor to the dimensionless Reynolds and Hedstrom numbers and can be used to predict pressure drop for flow of a yield stress fluid through a packed bed of spherical particles. Conditions for flow or no-flow are also determined in the correlation. Comparison of model calculations, between a Newtonian and a yield stress fluid for flow penetration into a packed bed of spheres, shows the yield stress fluid initially performs similar to the Newtonian fluid, at large Reynolds numbers. At lower Reynolds numbers the yield stress effect becomes important and the flow rate significantly decreases when compared to the Newtonian fluid.  相似文献   

18.
Slow sedimentation of a deformable drop of Bingham fluid in an unbounded Newtonian medium is studied using a variation of the integral equation method (Toose et al., J Eng Math 30:131–150, 1996, Int J Numer Methods Fluids 30:653–674, 1999). The Green function for the Stokes equation is used, and the non-Newtonian stress is treated as a source term. The computations are performed for a range of physical parameters of the system. It is demonstrated that initially deformed drop similar to Newtonian ones breaks up for high capillary number, Ca, and stabilizes to steady shapes at low Ca. Estimations of critical capillary number for specific initial deformations demonstrated its growth (increase in the stability of the drop) with the yield stress magnitude both for prolate and oblate initial shapes. Prolate initial shapes become more stable with the increase of the plastic viscosity. In contrast to this, for low yield stress, oblate shapes are destabilized with the growth of the plastic viscosity. This effect is similar to the effect of the viscosity of a Newtonian drop on its stability. However, at higher yield stress, the effect of plastic viscosity is reversed.  相似文献   

19.
Summary  This paper deals with interaction problems of elliptical and ellipsoidal inclusions under bending, using singular integral equations of the body force method. The problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are densities of body forces distributed in the x,y and r,θ,z directions in infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the elliptical and the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynomials. The present method is found to yield the exact solutions for a single elliptical or spherical inclusion under a bending stress field. It yields rapidly converging numerical results for interface stresses in the interaction of inclusions. Received 9 September 1999; accepted for publication 15 January 2000  相似文献   

20.
Recently these authors have proved [46, 47] that a smooth spin tensor Ωlog can be found such that the stretching tensor D can be exactly written as an objective corotational rate of the Eulerian logarithmic strain measure ln V defined by this spin tensor, and furthermore that in all strain tensor measures only ln V enjoys this favourable property. This spin tensor is called the logarithmic spin and the objective corotational rate of an Eulerian tensor defined by it is called the logarithmic tensor-rate. In this paper, we propose and investigate a hypo-elasticity model based upon the objective corotational rate of the Kirchhoff stress defined by the spin Ωlog, i.e. the logarithmic stress rate. By virtue of the proposed model, we show that the simplest relationship between hypo-elasticity and elasticity can be established, and accordingly that Bernstein's integrability theorem relating hypo-elasticity to elasticity can be substantially simplified. In particular, we show that the simplest form of the proposed model, i.e. the hypo-elasticity model of grade zero, turns out to be integrable to deliver a linear isotropic relation between the Kirchhoff stress and the Eulerian logarithmic strain ln V, and moreover that this simplest model predicts the phenomenon of the known hypo-elastic yield at simple shear deformation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号