首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of hydrogen-bonding interactions in the formation and/or stabilization of liquid crystalline phases has been recognized in recent years and significant work has been conducted. Following the first and well-established examples of liquid crystal formation through the dimerization of aromatic carboxylic acids, several classes of compounds have been prepared by the interaction of complementary molecules, the liquid crystalline behaviour of which is crucially dependent on the structure of the resulting supramolecular systems. In this review the main classes of liquid crystals prepared through hydrogen-bonding interactions are presented, with the aim of establishing, in the first place, the diversity of organic compounds that can be used as building elements in the process of liquid crystal formation. Rigid-rod anisotropic or amphiphilic-type molecules, appropriately functionalized with recognizable moieties, interact in the melt or in solution and lead to the formation of supramolecular complexes that may exhibit thermotropic liquid crystalline character. Depending on the nature, number and position of the groups able to form hydrogen bonds, a diversity of supramolecular structures, both dimeric and polymeric, have been obtained, affording in turn various liquid crystalline phases. The structure and stability of these hydrogen-bonded supramolecular complexes and their relation to the observed liquid crystalline phases are the main topics of this review.  相似文献   

2.
The role of hydrogen bonding in the formation or stabilization of liquid crystalline phases has only recently been appreciated. Following the first, wellestablished examples of liquid crystal formation from the dimerization of aromatic carboxylic acids, through hydrogen bonding, several classes of compounds have recently been synthesized, the liquid crystalline behavior of which is also dependent on intermolecular hydrogen bonds between similar or dissimilar molecules. In this review the main classes of compounds exhibiting liquid crystallinity due to hydrogen bonding are presented to show the diversity of organic compounds that can be used as building elements in liquid crystals. The molecules are either of the rigid-rod anisotropic or amphiphilic types such as molecules appropriately functionalized with pyridyl and carboxyl groups, whose interaction leads to the formation of liquid crystals; amphiphilic carbohydrates and amphiphilic and bolaamphiphilic compounds with multiple hydroxyl groups whose dimerization or association is indispensable for the formation of liquid crystals; and certain amphiphilic carboxylic acids with monomeric or polymeric mesogens and amphiphilic-type compounds bearing different moieties, whose interaction may lead to the formation of mesomorphic compounds. Associated with the macroscopic display of liquid crystalline phases is the supramolecular structure, and therefore rather extended discussion of these structures are included in this review.  相似文献   

3.
[structure: see text] The crystalline donor-acceptor hydrogen-bonding complexes between 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) and dipyridylacetylenes (DPA) [2,2'-DPA, 3,3'-DPA, and 4,4'-DPA] were prepared, and crystal structures were revealed by X-ray analysis. The structures of the complexes are formed by intermolecular hydrogen-bonding interactions and demonstrate three supramolecular architectures based on a new common supramolecular synthon, which allows the formation of a different stacking arrangement and ionicity.  相似文献   

4.
X. Y. Xu  L. X. Wang  W. M. Gu 《Liquid crystals》2013,40(12):1365-1372
Two series of hydrogen-bonded side-chain liquid crystal polymers have been prepared by mixing components containing carboxyl acid and pyridyl-based fragments. We have focused our attention on the effect that the position of the hydrogen bond donor or acceptor site attached to the side-chain backbone has on the hydrogen-bonding interactions and liquid crystalline phase transitions of the system. The liquid crystalline behaviour of the complexes is studied using Fourier transform infrared spectroscopy, differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. The results indicate that the phase transition temperatures of the complexes are influenced by the site of hydrogen-bonding.  相似文献   

5.
Gold, palladium and platinum complexes with an unusual isocyanide ligand containing a carboxylic acid function, [AuCl(CNC(6)H(4)COOH)], cis-[MI(2)(CNC(6)H(4)COOH)(2)] and trans-[MI(2)(CNC(6)H(4)COOH)(2)] (M = Pd, Pt) have been isolated. The carboxylic acid group of the coordinated isocyanide acts as a hydrogen donor for hydrogen-bonding and three series of stable hydrogen-bonded liquid crystalline metal complexes have been prepared with decyloxystilbazole. Although all the metal acid derivatives used are not mesomorphic, and decyloxystilbazole only shows an ordered Smectic E phase, four out of the five hydrogen-bonded decyloxystilbazole complexes studied display enantiotropic smectic A or nematic mesophases. The single crystal X-ray diffraction structure of trans-[PdI(2)(CNC(6)H(4)COOH)(2)].C(4)H(8)O(2) has been determined and confirms the formation of a supramolecular array in the solid state supported by hydrogen-bonding.  相似文献   

6.
This review addresses the key principles underlying the formation of liquid crystalline phases based on wedge-shaped and cone-shaped dendrons of different chemical nature. Despite rich phase diversity of the above systems, the development of a mesophase can be reliably predicted by the geometric model, which compares the shape of a wedge dendron with the radial density distribution in the relevant Voronoi polyhedra. 2D columnar phases formed by chiral [7]-heterohelicene molecules with long aliphatic side chains are described in detail. The as-formed columnar aggregates are shown to possess a helical 132 symmetry and are composed of thirteen blocks, and each block involves six molecules. In this case, the internal structure of the first-level (lower) supramolecular aggregate appears to be different from that of the helical supramolecular structure.  相似文献   

7.
Coinage metals nitrogen chemistry has not been studied extensively until recently. The focus of this review is the base- and halide-free complexes of the monoanionic nitrogen ligands. This review describes how minor ligand modifications can result in a drastic change in the metal–metal interactions in multinuclear compounds. Crystal structures of these complexes show individual complexes, dimers, supramolecular columnar packing or more complex supramolecular aggregates. Bulky substituents on the ligands can prevent intermolecular metal–metal interactions or the formation of supramolecular architectures. The nuclearity and metal–metal interactions in these complexes are controlled by ligand steric and electronic factors and solvent of crystallization. Many classes of nitrogen ligand coordination compounds have given rise to advances in several fundamental and applied research aspects. Recent potential applications of nitrogen ligand complexes are highlighted particularly for those complexes included in this review.  相似文献   

8.
The amplification of molecular chirality by liquid crystalline systems is widely applied in investigations towards enantioselective solvent-solute interactions, chiral supramolecular assemblies, smart materials, and the development of liquid crystal displays. Here we present an overview of recent achievements in the development of new chiral dopant systems for the generation of cholesteric liquid crystalline phases. Based on a distinction between shape-persistent and bistable dopants, several dopant classes will be discussed.  相似文献   

9.
生物液晶   总被引:2,自引:0,他引:2  
液晶是一种介于液相和固相之间的中间相,具有流动性和有序性,其性质表明它是一种极适于生命特征的状态。生命体中的蛋白质、核酸、多糖、脂类等都能够通过自组装而呈现液晶态,其液晶行为与细胞和组织功能的表达有关。本文介绍了液晶的分类、表征方法及生命体内的蛋白质、脱氧核糖核酸、多糖、脂类的液晶特性以及液晶态的生物材料与细胞的相互作用。  相似文献   

10.
环糊精及其衍生物的超分子晶体结构研究进展   总被引:13,自引:0,他引:13  
本文对近年来有关环糊精、环糊精衍生物以及它们与各类客体组装成的超分子包合物的晶体结构研究进行的简要概述。  相似文献   

11.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

12.
A series of disc-shaped molecules were prepared by the condensation of 1,2-diamines with 2,3,6,7-tetrakis(hexyloxy)phenanthrene-9,10-dione to investigate the relationship between changes in molecular structure and the self-assembly of columnar liquid crystalline phases. A comparison of compounds with different core sizes indicated that molecules with larger aromatic cores had a greater propensity to form columnar phases, as did compounds substituted with electron-withdrawing groups. In contrast, molecules with electron-donating substituents were nonmesogenic. The clearing temperature of columnar phases increased linearly with the electron-withdrawing ability of the substituents, as quantified by Hammett sigma-values. The observed trends can be rationalized in terms of the strength of pi-pi interactions between aromatic cores in the liquid crystalline phases and suggest that both electrostatic interactions and dispersion forces play important roles in the self-assembly of these materials.  相似文献   

13.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

14.
Supramolecular ferroelectric liquid crystalline complexes have been obtained from 4-alkoxybenzoic acids and optically active trans-4-substituted-4'-stilbazoles. Chiral smectic C phases are induced by the formation of supramolecular mesogenic structure through the selective intermolecular hydrogen bond between the achiral benzoic acids and the chiral non-mesogenic stilbazoles.  相似文献   

15.
Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H?NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues.  相似文献   

16.
The present report undertakes a challenge of general interest in supramolecular chemistry: the achievement of helical organizations with controlled structure. To achieve this target we considered the possibility of inducing supramolecular chirality using molecules that were designed to organize into columnar mesophases. The use of oxazoline-derived ligands and metal coordination served as tools to prepare molecules with a phasmidic-like structure, which show columnar organization in the liquid crystalline state. To ensure the formation of chiral mesophases, these complexes bear stereogenic centers in the rigid coordination environment of the metal. X-ray and circular dichroism experiments have revealed that chirality transfer does indeed take place from the chiral molecule to the columnar liquid crystal organization. This chiral columnar organization appears as a helix consisting of stacks of molecules that rotate with respect to one another along the column while maintaining their mean planes parallel to each other. In fact, it has been concluded that packing of these polycatenar molecules must be more efficient upon rotation of a molecule with respect to the adjacent one along the column. Furthermore, the same type of helical supraorganization has been found to be present in the mesophase of the racemic mixture and the mixture of diastereomers prepared from the racemic ligand. In this case, segregation of the optical isomers is proposed to occur to give rise to both types of helix (right-handed and left-handed).  相似文献   

17.
《Liquid crystals》2000,27(1):89-102
Computer simulations have been performed to examine the behaviour of the liquid crystalline molecule 4-n-heptyl-2-fluoro-phenyl 4-n-octyloxybiphenyl-4-carboxylate (MBF) when in contact with crystalline polymer surfaces. The simulations form part of a study of the alignment interactions that are found in liquid crystal displays. MBF forms several smectic phases including a chiral smectic C* phase when suitably doped. In this paper we examine the way that layers of MBF molecules interact with the structure of the crystalline polymer surface, with the aim of understanding how molecular level interactions give rise to macroscopic phenomena such as the cone angle in ferroelectric liquid crystal devices. Molecular dynamics simulations consisting of a fixed crystalline polymer surface in contact with either a single MBF molecule or up to two layers of them (48 molecules) have been performed. A variety of simple polymer surfaces have been examined and the simulations show that the cone angle is highly dependent on the geometry of both the liquid crystal molecule and the polymer substrate. For molecules of MBF on polyethylene substrates, a cone angle of 20 is predicted, in line with experimental findings.  相似文献   

18.
Halogen bonding interactions in the formation of liquid crystalline phases have been recognised in recent years. Here, we report a novel series of iodine-bonded liquid crystals using 1,2-diiodotetrafluorobenzene (1,2-DITFB) and azopyridine derivatives (AnAzPy), showing a smectic A phase and concurrent photoresponsive behaviour. These were characterised by using a polarising optical microscope, differential scanning calorimetry and UV-vis absorption spectroscopy. The formation of iodine bonding in the complexes was confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy. Importantly, these iodine-bonded complexes demonstrated a low liquid crystal temperature range (30–50°C) among those reported for photoresponsive halogen-bonded liquid crystals. The molar ratio of the iodine-bonded donor and acceptor was 1:1 upon the self-assembly of the supramolecular complex molecule, as indicated by 1D-WAXD experiments of mixed samples of 1,2-DITFB and AnAzPy with different molar ratios. This study offers a new family of photoresponsive halogen-bonded liquid crystals and broadens the potential applications in their associated systems.  相似文献   

19.
Amidopyridine and -2,2'-bipyridine derivatives of EDT-TTF and BTM-TTF (EDT=ethylenedithio, BTM=bis(thiomethyl), TTF=tetrathiafulvalene) have been synthesized and crystallographically characterized. In the solid state, the different supramolecular organization of all these donors results from the competition between the intermolecular interactions, that is, van der Waals, hydrogen-bonding, pi-pi stacking, and donor-acceptor interactions. The electron-donating properties of the new donors have been investigated by cyclic voltammetry measurements. A radical cation salt, formulated [EDT-TTF-CONH-m-Py](.) (+)[PF(6)](-), has been prepared by electrocrystallization and its crystal structure determined by X-ray analysis. Square planar dicationic complexes with the same donor and M(II)L(2) fragments (M=Pd, Pt, L(2)=bis(diphenylphosphino)propane (dppp) or bis(diphenylphosphino)ethane (dppe)) have been synthesized and one of them, containing the Pd(dppp) unit, has been structurally characterized. The conformation of the complex in the crystalline state is anti, with the coexistence of the dl racemic pair of enantiomers.  相似文献   

20.
New discotic nematic liquid crystals have been prepared through intermolecular hydrogen bonding between the core of 1,3,5-trihydroxybenzene (phloroglucinol, PG) or 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) and the peripheral molecules of stilbazole derivatives. The various nematic phases formed by new hydrogen bonding building blocks were investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. The first discotic complexes of PG and trans-4-alkoxy-4′-stilbazoles exhibited nematic columnar (NC) and hexagonal columnar phases depending on the length of alkyl chains, which were considered as the basic discotic structure. Several structural variations on the building blocks were attempted to examine their effects on the liquid crystalline properties of discotic complexes. The nematic lateral phase (NL) with enhanced intercolumnar order was observed for the complexes of PG and trans-4-cyanoalkoxy-4′ stilbazoles due probably to the strong dipole interactions between cyano groups at the end of alkoxy chains. By introducing the nonlinear structure in three arms of supramolecular discotic mesogen, a discotic nematic phase (ND) was observed for the complex of THPB and trans-4-octyloxy-4 -stilbazole. The single hydrogen bonding between phenol and pyridine moieties in this study provides a simple and effective method for preparing the rarely found discotic nematic liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号