首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of local search methods for flow shop scheduling   总被引:1,自引:0,他引:1  
Local search techniques are widely used to obtain approximate solutions to a variety of combinatorial optimization problems. Two important categories of local search methods are neighbourhood search and genetic algorithms. Commonly used neighbourhood search methods include descent, threshold accepting, simulated annealing and tabu search. In this paper, we present a computational study that compares these four neighbourhood search methods, a genetic algorithm, and a hybrid method in which descent is incorporated into the genetic algorithm. The performance of these six local search methods is evaluated on the problem of scheduling jobs in a permutation flow shop to minimize the total weighted completion time. Based on the results of extensive computational tests, simulated annealing is found to generate better quality solutions than the other neighborhood search methods. However, the results also indicate that the hybrid genetic descent algorithm is superior to simulated annealing.  相似文献   

2.
In this paper, we consider the problem of providing flexibility to solutions of two-machine shop scheduling problems. We use the concept of group-scheduling to characterize a whole set of schedules so as to provide more choice to the decision-maker at any decision point. A group-schedule is a sequence of groups of permutable operations defined on each machine where each group is such that any permutation of the operations inside the group leads to a feasible schedule. Flexibility of a solution and its makespan are often conflicting, thus we search for a compromise between a low number of groups and a small value of makespan. We resolve the complexity status of the relevant problems for the two-machine flow shop, job shop and open shop. A number of approximation algorithms are developed and their worst-case performance is analyzed. For the flow shop, an effective heuristic algorithm is proposed and the results of computational experiments are reported.  相似文献   

3.
In this paper, we present a branch-and-bound approach for solving a two-machine flow shop scheduling problem, in which the objective is to minimize a weighted combination of job flowtime and schedule makespan. Experimental results show that the algorithm works very well for certain special cases and moderately well for others. In fact, it is able to produce optimal schedules for 500-job problems in which the second machine dominates the first machine. It is also shown that the algorithm developed to provide an upper bound for the branch-and-bound is optimal when processing times for jobs are the same on both machines. The primary reason for developing the branch-and-bound approach is that its results can be used to guide other heuristic techniques, such as simulated annealing, tabu search and genetic algorithms, in their search for optimal solutions for larger problems.  相似文献   

4.
The multiprocessor flow shop scheduling problem is a generalization of the ordinary flow shop scheduling problem. The problem consists of both assigning operations to machines and scheduling the operations assigned to the same machine. We review the literature on local search methods for flow shop and job shop scheduling and adapt them to the multiprocessor flow shop scheduling problem. Other local search approaches we consider are variable-depth search and simulated annealing. We show that tabu search and variable-depth search with a neighborhood originated by Nowicki and Smutnicki outperform the other algorithms.  相似文献   

5.
Approximative procedures for no-wait job shop scheduling   总被引:1,自引:0,他引:1  
In this article we consider the no-wait job shop problem with makespan objective. Based on a decomposition of the problem into a sequencing and a timetabling problem, we propose two local search algorithms. Extensive computational tests in which the algorithms compare favorably to the best existing strategies are reported. Although not specifically designed for that purpose, our algorithms also outperform one of the best no-wait flow shop algorithms in literature.  相似文献   

6.
This paper addresses the large-scale extended job shop scheduling problem while considering the bill of material and the working shifts constraints. We propose two approaches for the problem. One is based on dispatching rules (DR), and the other is an application of the Nested Partitions (NP) Framework. A sampling approach for the exact feasible subregion is developed to complete the NP method. Furthermore, to efficiently search each subregion, a weighted sampling approach is also presented. Computational experiments show that the NP method with weighted sampling can find good solutions for most large-scale extended job shop scheduling problems.  相似文献   

7.
The paper is devoted to some flow shop scheduling problems, where job processing times are defined by functions dependent on their positions in the schedule. An example is constructed to show that the classical Johnson's rule is not the optimal solution for two different models of the two-machine flow shop scheduling to minimize makespan. In order to solve the makespan minimization problem in the two-machine flow shop scheduling, we suggest Johnson's rule as a heuristic algorithm, for which the worst-case bound is calculated. We find polynomial time solutions to some special cases of the considered problems for the following optimization criteria: the weighted sum of completion times and maximum lateness. Some furthermore extensions of the problems are also shown.  相似文献   

8.
针对带分批约束的混合无等待流水加工环境中干扰事件的出现导致初始调度计划发生偏离的问题,研究如何运用干扰管理理论来应对工件变更扰动情况,建立了兼顾最小化工件完工时间加权和指标(初始调度目标)和最小化工件完工滞后时间加权和指标(偏离校正目标)的干扰管理调度模型,提出了双层微粒群优化策略与随机多邻域搜索机制相结合的混合求解算法。数值算例仿真实验结果表明,包含“插入-交换”大概率邻域搜索算子的混合微粒群优化算法求解本文所构建的干扰管理调度模型是有效的。  相似文献   

9.
We consider a two-machine flow shop scheduling problem with effects of deterioration and learning. By the effects of deterioration and learning, we mean that the processing time of a job is a function of its execution starting time and its position in a sequence. The objective is to find a sequence that minimizes the makespan. Several dominance properties and two lower bounds are derived, which are used to speed up the elimination process of a branch-and-bound algorithm proposed to solve the problem. Two heuristic algorithms are also proposed to obtain near-optimal solutions. Computational results are presented to evaluate the performance of the proposed algorithms.  相似文献   

10.
This paper deals with a general job shop scheduling problem with multiple constraints, coming from printing and boarding industry. The objective is the minimization of two criteria, the makespan and the maximum lateness, and we are interested in finding an approximation of the Pareto frontier. We propose a fast and elitist genetic algorithm based on NSGA-II for solving the problem. The initial population of this algorithm is either randomly generated or partially generated by using a tabu search algorithm, that minimizes a linear combination of the two criteria. Both the genetic and the tabu search algorithms are tested on benchmark instances from flexible job shop literature and computational results show the interest of both methods to obtain an efficient and effective resolution method.  相似文献   

11.
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.  相似文献   

12.
This study investigates an optimization-based heuristic for the robotic cell problem. This problem arises in automated cells and is a complex flow shop problem with a single transportation robot and a blocking constraint. We propose an approximate decomposition algorithm. The proposed approach breaks the problem into two scheduling problems that are solved sequentially: a flow shop problem with additional constraints (blocking and transportation times) and a single machine problem with precedence constraints, time lags, and setup times. For each of these problems, we propose an exact branch-and-bound algorithm. Also, we describe a genetic algorithm that includes, as a mutation operator, a local search procedure. We report the results of a computational study that provides evidence that the proposed optimization-based approach delivers high-quality solutions and consistently outperforms the genetic algorithm. However, the genetic algorithm delivers reasonably good solutions while requiring significantly shorter CPU times.  相似文献   

13.
This paper considers the problem of scheduling n jobs on m machines in an open shop environment so that the sum of completion times or mean flow time becomes minimal. It continues recent work by Bräsel et al. [H. Bräsel, A. Herms, M. Mörig, T. Tautenhahn, T. Tusch, F. Werner, Heuristic constructive algorithms for open shop scheduling to minmize mean flow time, European J. Oper. Res., in press (doi.10.1016/j.ejor.2007.02.057)] on constructive algorithms. For this strongly NP-hard problem, we present two iterative algorithms, namely a simulated annealing and a genetic algorithm. For the simulated annealing algorithm, several neighborhoods are suggested and tested together with the control parameters of the algorithm. For the genetic algorithm, new genetic operators are suggested based on the representation of a solution by the rank matrix describing the job and machine orders. Extensive computational results are presented for problems with up to 50 jobs and 50 machines, respectively. The algorithms are compared relative to each other, and the quality of the results is also estimated partially by a lower bound for the corresponding preemptive open shop problem. For most of the problems, the genetic algorithm is superior when fixing the same number of 30 000 generated solutions for each algorithm. However, in contrast to makespan minimization problems, where the focus is on problems with an equal number of jobs and machines, it turns out that problems with a larger number of jobs than machines are the hardest problems.  相似文献   

14.
This paper considers the general, no-wait and no-idle flow shop scheduling problems with deteriorating jobs. By a deteriorating job we mean that the processing time is an increasing function of its execution starting time. A linear deterioration function is assumed and some dominating relationships between machines can be satisfied. It is shown that for the problems to minimize the makespan or the weighted sum of completion time, polynomial algorithms still exist, although these problems are more complicated than the classical ones. When the objective is to minimize the maximum lateness, the solutions of a classical version may not hold.  相似文献   

15.
A customer would like to buy a given set of products in a given set of Internet shops. For each Internet shop, standard prices for the products are known as well as a concave increasing discounting function of total standard and delivery price. The problem is to buy all the required products at the minimum total discounted price. Computational complexity of various special cases is established. Properties of optimal solutions are proved and polynomial time and exponential time solution algorithms based on these properties are designed. Two heuristic algorithms are suggested and computationally tested.  相似文献   

16.
Machine learning exists in many realistic scheduling situations. This study focuses on permutation flow shop scheduling problems, where the actual processing time of a job is defined by a general non-increasing function of its scheduled position, i.e., general position-dependent learning effects. The objective functions are to minimize the total completion time, the makespan, the total weighted completion time, and the total weighted discounted completion time, respectively. To solve these problems, we present approximation algorithms based on the optimal permutations for the corresponding single machine scheduling problems and analyze their worst-case error bound.  相似文献   

17.
In this paper, we consider the problem of scheduling n jobs on m machines in an open shop environment so that the sum of completion times or mean flow time becomes minimal. For this strongly NP-hard problem, we develop and discuss different constructive heuristic algorithms. Extensive computational results are presented for problems with up to 50 jobs and 50 machines, respectively. The quality of the solutions is evaluated by a lower bound for the corresponding preemptive open shop problem and by an alternative estimate of mean flow time. We observe that the recommendation of an appropriate constructive algorithm strongly depends on the ratio n/m.  相似文献   

18.
A real industrial production phenomenon, referred to as learning effects, has drawn increasing attention. However, most research on this issue considers only single machine problems. Motivated by this limitation, this paper considers flow shop scheduling problems with an exponential learning effect. By the exponential learning effect, we mean that the processing time of a job is defined by an exponent function of its position in a processing permutation. The objective is to minimize one of the four regular performance criteria, namely, the total completion time, the total weighted completion time, the discounted total weighted completion time, and the sum of the quadratic job completion times. We present heuristic algorithms by using the optimal permutations for the corresponding single-machine scheduling problems. We also analyse the worst-case bound of our heuristic algorithms.  相似文献   

19.
This article considers flow shop scheduling problems with a learning effect. By the learning effect, we mean that the processing time of a job is defined by a function of its position in a processing permutation. The objective is to minimize the total weighted completion time. Some heuristic algorithms by using the optimal permutations for the corresponding single machine scheduling problems are presented, and the worst-case bound of these heuristics are also analyzed.  相似文献   

20.
No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems   总被引:4,自引:0,他引:4  
This paper deals with the no-wait job shop problem with a makespan objective. We present some new theoretical properties on the complexity of subproblems associated with a well-known decomposition approach. Justified by the complexity results, we implement a fast tabu search algorithm for the problem at hand. It is extensively tested on known benchmark instances and compares favorably to the best existing algorithms for the no-wait job shop as well as the no-wait flow shop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号