首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The stationary system of Maxwell equations for a unmagnetized nonconducting medium is considered. For this system, the problem of determining the permittivity ε from given electric or magnetic fields is studied. It is assumed that the electromagnetic field is induced by a plane wave coming from infinity in the direction ν. It is also assumed that the permittivity is different from a given positive constant ε0 only inside a compact domain Ω ? R 3 with a smooth boundary S. To find ε inside Ω, the solution of the corresponding direct problem for the system of electrodynamic equations on the shadow portion of the boundary of Ω is specified for all frequencies starting at some fixed ω0 and for all ν. The high-frequency asymptotics of the solution to the direct problem is studied. It is shown that the information specified makes it possible to reduce the original problem to the well-known inverse kinematic problem of determining the refraction coefficient inside Ω from the traveling times of an electromagnetic wave. This leads to a uniqueness theorem for the solution of the problem under consideration and opens up the opportunity of its constructive solution.  相似文献   

2.
Under consideration is the stationary system of equations of electrodynamics relating to a nonmagnetic nonconducting medium. We study the problem of recovering the permittivity coefficient ε from given vectors of electric or magnetic intensities of the electromagnetic field. It is assumed that the field is generated by a point impulsive dipole located at some point y. It is also assumed that the permittivity differs from a given constant ε0 only inside some compact domain Ω ? R3 with smooth boundary S. To recover ε inside Ω, we use the information on a solution to the corresponding direct problem for the system of equations of electrodynamics on the whole boundary of Ω for all frequencies from some fixed frequency ω 0 on and for all yS. The asymptotics of a solution to the direct problem for large frequencies is studied and it is demonstrated that this information allows us to reduce the initial problem to the well-known inverse kinematic problem of recovering the refraction index inside Ω with given travel times of electromagnetic waves between two arbitrary points on the boundary of Ω. This allows us to state uniqueness theorem for solutions to the problem in question and opens up a way of its constructive solution.  相似文献   

3.
We consider the integrodifferential system of equations of electrodynamics which corresponds to a dispersive nonmagnetic medium. For this system we study the problem of determining the spatial part of the kernel of the integral term. This corresponds to finding the part of dielectric permittivity depending nonlinearly on the frequency of the electromagnetic wave. We assume that the support of dielectric permittivity lies in some compact domain Ω ⊂ ℝ3. In order to find it inside Ω we start with known data about the solution to the corresponding direct problem for the equations of electrodynamics on the whole boundary of Ω for some finite time interval. On assuming that the time interval is sufficiently large we estimate the conditional stability of the solution to this inverse problem.  相似文献   

4.
Let Ω be a bounded Lipschitz domain in ? n , n ? 2, and let L be a second-order matrix strongly elliptic operator in Ω written in divergence form. There is a vast literature dealing with the study of domains of fractional powers of operators corresponding to various problems (beginning with the Dirichlet and Neumann problems) with homogeneous boundary conditions for the equation Lu = f, including the solution of the Kato square root problem, which arose in 1961. Mixed problems and a class of problems for higher-order systems have been covered as well. We suggest a new abstract approach to the topic, which permits one to obtain the results that we deem to be most important in a much simpler and unified way and cover new operators, namely, classical boundary operators on the Lipschitz boundary Γ = ?Ω or part of it. To this end, we simultaneously consider two well-known operators associated with the boundary value problem.  相似文献   

5.
We study the branch of semistable and unstable solutions (i.e., those whose Morse index is at most 1) of the Dirichlet boundary value problem ? Δu = λf(x)/(1 ? u)2 on a bounded domain Ω ? ?N, which models—among other things—a simple electrostatic microelectromechanical system (MEMS) device. We extend the results of 11 relating to the minimal branch, by obtaining compactness along unstable branches for 1 ≤ N ≤ 7 on any domain Ω and for a large class of “permittivity profiles” f. We also show the remarkable fact that powerlike profiles f(x) ? |x|α can push back the critical dimension N = 7 of this problem by establishing compactness for the semistable branch on the unit ball, also for N ≥ 8 and as long as As a byproduct, we are able to follow the second branch of the bifurcation diagram and prove the existence of a second solution for λ in a natural range. In all these results, the conditions on the space dimension and on the power of the profile are essentially sharp. © 2007 Wiley Periodicals, Inc.  相似文献   

6.
The inverse electrocardiography problem related to medical diagnostics is considered in terms of potentials. Within the framework of the quasi-stationary model of the electric field of the heart, the solution of the problem is reduced to the solution of the Cauchy problem for the Laplace equation in R 3. A numerical algorithm based on the Tikhonov regularization method is proposed for the solution of this problem. The Cauchy problem for the Laplace equation is reduced to an operator equation of the first kind, which is solved via minimization of the Tikhonov functional with the regularization parameter chosen according to the discrepancy principle. In addition, an algorithm based on numerical solution of the corresponding Euler equation is proposed for minimization of the Tikhonov functional. The Euler equation is solved using an iteration method that involves solution of mixed boundary value problems for the Laplace equation. An individual mixed problem is solved by means of the method of boundary integral equations of the potential theory. In the study, the inverse electrocardiography problem is solved in region Ω close to the real geometry of the torso and heart.  相似文献   

7.
The problem of determining the density of the medium and one of its elasticity moduli is considered. Properties of the elastic medium and external forces are assumed to be independent of the coordinate x 3. In this case, the third component of the displacement vector satisfies a scalar equation of the second order, which contains the density ρ of the medium and elasticity modulus μ as coefficients. The parameters ρ and μ are known to be positive and constant everywhere outside some compact domain D ? ?2, but they are unknown inside D. The problem of determining these coefficients in D via information, given on the boundary of the domain D for some finite time interval, about a solution of two direct problems is considered. An estimate of the conditional stability of a solution of the inverse problem under consideration is established.  相似文献   

8.
We consider the chemotaxis system under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ? ?n. The chemotactic sensitivity function is assumed to generalize the prototype It is proved that no chemotactic collapse occurs in the sense that for any choice of nonnegative initial data (with some r > n), the corresponding initial‐boundary value problem possesses a unique global solution that is uniformly bounded (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We investigate the Cauchy problem for linear elliptic operators with C –coefficients at a regular set Ω ? R 2, which is a classical example of an ill-posed problem. The Cauchy data are given at the manifold Γ ? ?Ω and our goal is to reconstruct the trace of the H 1(Ω) solution of an elliptic equation at ?Ω/Γ. The method proposed here composes the segmenting Mann iteration with a fixed point equation associated with the elliptic Cauchy problem. Our algorithm generalizes the iterative method developed by Maz'ya et al., who proposed a method based on solving successive well-posed mixed boundary value problems. We analyze the regularizing and convergence properties both theoretically and numerically.

  相似文献   

10.
We study a semilinear parabolic partial differential equation of second order in a bounded domain Ω ? ?N, with nonstandard boundary conditions (BCs) on a part Γnon of the boundary ?Ω. Here, neither the solution nor the flux are prescribed pointwise. Instead, the total flux through Γnon is given, and the solution along Γnon has to follow a prescribed shape function, apart from an additive (unknown) space‐constant α(t). We prove the well‐posedness of the problem, provide a numerical method for the recovery of the unknown boundary data, and establish the error estimates. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 167–191, 2003  相似文献   

11.
For the integrodifferential equation that corresponds to the two-dimensional viscoelasticity problem, we study the problem of determining the density, the elasticity coefficient, and the spaceintegral term in the equation. We assume that the sought functions differ from the given constants only inside the unit disk D = {x ∈ ?2 | |x| < 1}. As information for solving this inverse problem, we consider the one-parameter family of solutions to the integrodifferential equation corresponding to impulse sources localized on straight lines and, on the boundary of D, there are defined the traces of the solutions for some finite time interval. It is shown that the use of a comparatively small part of the given information about the kinematics and the elements of dynamics of the propagating waves makes it possible to reduce the problem under consideration to three consecutively and uniquely solvable inverse problems that together give a solution to the initial inverse problem.  相似文献   

12.
A control problem governed by a pseudoparabolic equation onQ = Ω × (0, T) where Ω is an open bounded set inR2 orR3 with a smooth boundary is studied. Here the controls are of the formv(x,t) = v(t) δ(x ? a), a ? Ω. It is observed that ifv ? L2(0, T), then the trace of the corresponding solutiony(., T; v) belongs toL2(Ω). Existence, uniqueness, and regularity results are given for the optimal control as well as continuity results with respect to perturbation of the pointa.  相似文献   

13.
In this paper, under some assumptions on the flow with a low Mach number, we study the nonexistence of a global nontrivial subsonic solution in an unbounded domain Ω which is one part of a 3D ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by the potential equation. By establishing a fundamental a priori estimate on the solution of a second order linear elliptic equation in Ω with Neumann boundary conditions on Ω and Dirichlet boundary value at some point of Ω, we show that there is no global nontrivial subsonic flow with a low Mach number in such a domain Ω.  相似文献   

14.
For an integrodifferential equation corresponding to a two-dimensional viscoelastic problem, we study the problem of defining the spatial part of the kernel involved in the integral term of the equation. The support of the sought function is assumed to belong to a compact domain Ω. As information for solving this inverse problem, the traces of the solution to the direct Cauchy problem and its normal derivative are given for some finite time interval on the boundary of Ω. An important feature in the statement of the problem is the fact that the solution of the direct problem corresponds to the zero initial data and a force impulse in time localized on a fixed straight line disjoint with Ω. The main result of the article consists in obtaining a Lipschitz estimate for the conditional stability of the solution to the inverse problem under consideration.  相似文献   

15.
We survey recent results on ground and bound state solutions E:?→R~3 of the problem {▽(▽×E)+}λE=|E|~(P-2)E in Ω,v×E=0 on Ω on a bounded Lipschitz domain ??R~3,where?×denotes the curl operator in R~3.The equation describes the propagation of the time-harmonic electric field R{E(χ)e~(iwt)}in a nonlinear isotropic material ? withλ=-μεω~2≤0,where μ andεstand for the permeability and the linear part of the permittivity of the material.The nonlinear term|E|~(P-2)E with 2p≤2*=6 comes from the nonlinear polarization and the boundary conditions are those for?surrounded by a perfect conductor.The problem has a variational structure;however the energy functional associated with the problem is strongly indefinite and does not satisfy the Palais-Smale condition.We show the underlying difficulties of the problem and enlist some open questions.  相似文献   

16.
For a linear boundary value problem for a Fredholm integro-differential equation, we obtain necessary and sufficient conditions for the unique solvability in terms of a matrix Q ν m (h) formed on the basis of the matrices of boundary conditions, the differential part, the integral term, and a partition with increment h > 0 of the interval on which the problem is defined.  相似文献   

17.
We study a semilinear elliptic equation Au = f(x, u) with nonlinear Neumann boundary condition Bu = φ(ξ, u) in an unbounded domain Ω ? ?n, the boundary of which is defined by periodic functions. We assume that f and φ and the coefficients of the operators are asymptotically periodic in the space variables. Our main result states the existence of an asymptotically decaying, nontrivial solution of this problem with minimal energy. The proof is based on the concentration-compactness principle.  相似文献   

18.
This paper considers the solution of the Milne problem of radiative transfer with isotropic scattering in a continuous stochastic medium. Properties of the medium are assumed to be continuous random functions of the spatial dimensions. The available solutions - in literature - for this stochastic integro-differential equation (SIDE) are represented only by the ensemble average of the radiant energy density. In this paper, a developed algorithm, based on the implementation of the random variable transformation technique together with an integral transformation to the stochastic properties, is introduced. A complete stochastic solution represented by the probability-density function (p.d.f) of the radiant energy density is obtained. Using the closed form of the p.d.f, the nth moment of the stochastic solution is evaluated. In realization of this work, Exponential and Gaussian statistics for the medium properties are assumed. Results are physically acceptable and found to be compatible with those in the literature.  相似文献   

19.
We consider the Dirichlet problem and the mixed boundary-value problem for a nonlinear integro-differential equation of a parabolic type, which provides a mathematical model of the various modes in a photon-recycling semiconductor diode. The existence of the mixed derivative 2u/tx is proved for the solution of these problems. Method-of-lines schemes are constructed. An O(h) rate of convergence bound is established for the equation with nonlinear integral and differential components and an O(h2) bound for the equation with a nonlinear integral part.Kiev University. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 74, pp. 21–31, 1992;  相似文献   

20.
Let Ω be a local perturbation of the n-dimensional domain Ω0 = Ropf;n ? 1 × (0, π). In a previous paper8 we have introduced the notion of an admissible standing wave. We shall prove that the principle of limiting absorption holds for the Dirichlet problem of the reduced wave equation in Ω at ω ≥ 0 if Ω does not allow admissible standing waves with frequency ω. From Reference 8, this condition is satisfied for every ω ≥ 0 if Ω ≠ Ω0, and v · x ′ ≤ 0 on δΩ, where x′ = ( x 1,…, xn ? 1, 0) and v is the normal unit vector on δΩ pointing into the complement of Ω. In contrast to this, the principle of limiting absorption is violated in the case of the unperturbed domain Ω0 at the frequencies ω = 1,2,… if n ≤ 3. The second part of our investigation, which will appear in a subsequent paper, is devoted to the principle of limit amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号