首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The densities ρ and coefficients of compressibility k = ΔV/V 0 of a binary mixture {ethylene glycol (1) + tert-butanol (2)} in the temperature range of 278.15–323.15 K and pressures of 0.1–100 MPa over the entire range of compositions of liquid phase state are measured. Found that the coefficients of compressibility k of the mixture increase both with an increase in the concentration of tert-butanol and with a rise in temperature and pressure. The excess molar volumes of the mixture, apparent, partial molar volumes, and limiting partial molar volumes of the components are calculated. It is showed that the excess molar volumes of the mixture are negative and decrease when the pressure increases. The excess molar volumes are described by the Redlich-Kister equation. The partial molar volumes of ethylene glycol sharply decrease in the range of high concentrations of tert-butanol. The dependences of partial molar volumes of ethylene glycol are characterized by the presence of a region of temperature inversion. The “negative compressibility” of the limiting partial volumes of ethylene glycol is revealed.  相似文献   

2.
The isothermal compressibility and bulk viscosity of solutions of tetrahydrofuran (THF) in ethylene glycol were measured on a unique Micro PVT Systems unit over the concentration and pressure ranges 0–20 mol % THF and 0.1–160 MPa, respectively, at 298 K. The results were interpreted from the point of view of structural changes in the ethylene glycol-THF system.  相似文献   

3.
4.
Apparent molar volumes Vφ and apparent molar heat capacities Cp,φ were determined for aqueous solutions of d-lactose · H2O at molalities (0.01 to 0.34) mol · kg−1 at temperatures (278.15 to 393.15) K, and at the pressure 0.35 MPa. Our Vφ values were calculated from densities obtained using a vibrating tube densimeter, and our Cp,φ values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results for d-lactose(aq) and for d-lactcose · H2O were fitted to functions of m and T and compared with the literature results for aqueous d-glucose and d-galactose solutions. Infinite dilution partial molar volumes V2 and heat capacities Cp,2 are given over the range of temperatures.  相似文献   

5.
Densities, ρ and excess molar volumes, V?E of the binary mixtures of sulfolane, +methanol, +n-propanol,?+n-butanol, and +n-pentanol were measured at temperatures 298.15, 303.15, 308.15, 313.15, and 318.15?K, respectively, covering the whole composition range except methanol at 303.15–323.15?K. The V E for the systems were found to be negative and large in magnitude. The values of V E of the sulfolane, +n-butanol and sulfolane, +n-pentanol mixtures are being positive at lower and higher mole fractions of the alkanols (x 2). The magnitudes of the V E values of the mixtures are in the order sulfolane?+?methanol?>?sulfolane?+?n-propanol?>?sulfolane?+?n-butanol?>?sulfolane?+?n-pentanol. The observed values of V E for the mixtures have been explained in terms of (i) effects due to the differences in chain length of the alcohols, (ii) dipole–dipole interactions between the polar molecules, and (iii) geometric effect due to the differences in molar volume of the component molecules. These are more noticeable in the case of lower alcohols. All these properties have been expressed satisfactorily by appropriate polynomials.  相似文献   

6.
《Fluid Phase Equilibria》2004,215(2):129-142
Liquid densities and excess molar volumes (VE) are reported for the binary water+diethylene glycolamine, and water, methanol, ethanol, 1-propanol+triethylene glycol systems at atmospheric pressure and temperatures between 283.15 and 363.15 K in 10 K intervals. Negative VE were found for all investigated systems. At given temperature, the most negative VE is for the water+diethylene glycolamine system. For water containing systems, VE increase with temperature while the inverse effect was observed for alcoholic systems, i.e. VE became more negative with increasing temperature. For the triethylene glycol systems at constant temperature, absolute value of VE decreases in the series: water>methanol>ethanol>1-propanol within the whole composition range. The experimental results have been correlated using the three parameter Redlich–Kister equation.  相似文献   

7.
8.
Experimentally determined volumetric properties of the liquid binary mixture of {water (1) + glycerol (2)} were processed to calculate the changes of the following thermodynamic parameters with pressure: excess molar Gibbs free energy, ΔPoPGmE, excess molar entropy, ΔPoPSmE, excess molar enthalpy, ΔPoPHmE, as well as the enthalpy of mixing of water and glycerol, HmE, at 100 MPa. The mixing enthalpies of water and glycerol, HmE, became more exothermic with pressure increasing at all temperatures studied.  相似文献   

9.
The kinetics of formation of dinitrogen and dinitrogen oxide under the action of reactor n,γ-radiation was studied at 150–400°C, 0.1–16.0 MPa, and doses of 1.44 × 105?1.29 × 106 Gy. The radiation-chemical yields of N2 and N2O were determined. A comparative kinetic analysis of the experimental data was performed.  相似文献   

10.
Monodispersed nanostructured TiO2 spheres were obtained by the Sol–Gel method modified with ethylene glycol. The sample morphology and surface textural properties were characterized by X-ray diffraction (XRD), N2-physisorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and diffuse reflectance spectroscopy (DRS). The SEM image showed spheres with sizes ranging from 600 to 700 nm. In addition, HRTEM micrographs reveal hexagonal grains slightly elongated (20 nm). The powders present a BET surface area of 116 m2 g−1. Samples without thermal treatment and those treated at 400 °C both showed characteristic reflections of the anatase phase. The photocatalytic activity of the prepared TiO2 spheres was determined by degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution. Kinetics parameters have displayed than the nanostructured material present a reaction half-life time of 30 min and it was two times faster than commercial TiO2 (P25).  相似文献   

11.
12.
Comprehensive (p, ρ, T) measurements on cyclohexane, toluene, and ethanol were carried out in the homogeneous liquid phase for temperatures from 233.15 K to 473.15 K at pressures up to 30 MPa. The measurements were performed by using an accurate single-sinker densimeter based on the Archimedes’ buoyancy principle. The total uncertainty of the measurements in density was estimated to be 0.015% (level of confidence 95%). Based on the experimental results, accurate correlation equations for the density of the three liquids have been established; their uncertainty is 0.020%. Comparisons with previous results of other experimentalists and with values calculated from current equations of state are presented. In this context it is also shown that the density of a liquid can vary slightly depending on the batch of the liquid used for the measurements. The purpose of this work was to provide accurate correlation equations for the densities of the three selected liquids so that these liquids can be used as density reference liquids for the calibration of densimeters and, in particular, for the calibration of vibrating-tube densimeters.  相似文献   

13.
Densities, viscosities, and refractive indices of the ternary mixture consist of {2-methyl-2-butanol (1) + tetrahydrofuran (THF) (2) + propylamine (3)} at a temperature of 298.15 K and related binary mixtures were measured at temperatures of (288.15, 298.15, and 308.15) K at ambient pressure. Data were used to calculate the excess molar volumes and the deviations of the viscosity and refractive index. The Redlich–Kister and the Cibulka equations were used for correlating binary and ternary properties, respectively. The ERAS-model has been applied for describing the binary and ternary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary and ternary excess molar volumes and viscosities.  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - Nanofluid refers to the mixture of fluid and solid nanoparticles. If this mixture contains more than one NP or fluid, it is called “hybrid...  相似文献   

15.
Measurements of (p, ρ, T) for{xNH3 +  (1   x)H2O} at x =  (1.0000, 0.8374, 0.6005, and 0.2973) and at specified temperatures and pressures in the compressed liquid phase were carried out with a metal-bellows variable volumometer between T =  310 K and T =  400 K at pressures up to 17 MPa. The results cover the high-density region from ρ =  345 kg · m  3 for x =  1.0000 to ρ =  878 kg · m   3for x =  0.2973. The experimental uncertainties at a 95 per cent confidence interval in temperature T, pressure p, density ρ, and mole fraction x were estimated to be less than  ± 11 mK,  ± 2.6 kPa,  ± 2.1 · 10   3. ρ, and  ± 1.8 · 10  3· x, respectively. A detailed comparison of the density values with literature data as well as with an equation of state proposed by Tillner-Roth and Friend is also reported.  相似文献   

16.
Density and viscosity measurements in the T = (293.15–373.15) K range of pure 1-pentanol, R-(+)-limonene, as well as of the binary system {x1 1-pentanol + (1 − x1) limonene} over the whole concentration range were made. The experimental results were fitted to empirical equations, which permit the calculation of these properties in the studied temperature range. Calculated values are in agreement with the experimental ones. Data of the binary mixtures were further used to calculate the excess molar volume and viscosity deviations. Excess enthalpy at 303 K and vapour–liquid equilibrium measurements in the T = (328.15–343.15) K range were also obtained for the binary system. These last experimental results were used to calculate activity coefficients and the excess molar Gibbs energy. This binary system exhibits a maximum pressure azeotrope. Excess or deviation properties were fitted to the Redlich–Kister polynomial relation to obtain their coefficients and standard deviations. Vapour pressure of 1-pentanol over the P = (2.3–95.1) kPa range were also measured. Furthermore, functional relationships between the total pressure and the mole fraction of 1-pentanol with the temperature of the azeotropic point were also deduced. These equations are useful to calculate the azeotropic point coordinates in the temperature and pressure ranges studied in this work.  相似文献   

17.
Measurements of the isobaric specific heat capacity of {xH2O + (1 ? x)NH3} with x = (0.0000, 0.1566, 0.1597, 0.3030, 0.3048, 0.4956, 0.7061, and 0.8489) were carried out by the calorimeter with the thermal relaxation method, which we have developed, at T = (280, 300, 320, and 360) K over the pressure range from (0.1 to 15) MPa. The comparison of the present cp values with the literature data as well as the calculated cp values by the equations of state (EoS) is presented. The behaviour of the present cp values are correlated as a function of temperature, and mole fraction, at p = 5 MPa.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号