首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The1H NMR spectra of the hydrated monocationic forms of clinoptilolite M6[Al6Si30O72]·nH2O (M=Li, Na, K, Cs, NH4; n=12–22) and M 3 [Al6Si30O72]·nH2O (M′=Mg, Ca, Sr, Ba; n=20–24) and heulandite M8[Al8Si28O72]·21H2O (M=Na, K) are divided into three types differing in the symmetry of tensors of magnetic dipole-dipole interactions of protons in zeolite water molecules. On the basis of model calculations it is shown that water molecules in the Cs, K, and Ba forms of clinoptilolite and the K form of heulandite are ordered in structural positions. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Zeorex Ltd., Sofia. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 5, pp. 891–900, September–October, 1996. Translated by L. Smolina  相似文献   

2.
Dachiardite of the composition (Na2.21K0.35Ca0.66Mg0.10)[Al4.41Si19.67O48] · 11.8H2O (Tedzami, Georgia), a natural zeolite of the mordenite group, was studied using a Tian-Calvet high-temperature microcalorimeter. Melt solution calorimetry was used to determine the enthalpy of formation of the mineral from oxides (?613±45 kJ/mol) and elements (?26595±50kJ/mol). The obtained experimental and literature data were used to calculate the Gibbs energy of formation of dachiardite from elements. The thermodynamic properties of the hypothetical limiting members of the isomorphous series (Na, K, Ca)[Al4Si20O48] · 13H2O were estimated.  相似文献   

3.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

4.
Non-empirical molecular orbital studies on the relative stabilities of topologically closed ring clusters H8Si4O4, [H8Si3AlO4]? and [H8Si2Al2O4]? modelling building units of zeolite frameworks, have been carried out. According to the calculations, AlOAl type bridges are unstable in doubly negative charged species, but can be stabilized in the presence of cations. This stabilization effect increases with increasing cation charge. Several hypothetical bimolecular cluster equilibria are also discussed.  相似文献   

5.
A thermochemical study of partheite of composition (Ca1.96Mg0.04Na0.01K0.01) · [(Al4.04Fe 0.01 3+ )Si3.95O14.97(OH)2.03] · 4.2H2O, a natural calcium zeolite extracted from gabbro pegmatites of the Denezhkin Kamen’ deposit (North Ural, Russia), was performed. The enthalpies of formation of partheite from the constituent oxides, (Δf H°ox(298.15 K) = ?359 ± 21), and elements, (Δf H°el(298.15 K) = ?10108 ± 21), were determined by means of high-temperature in-melt-dissolution calorimetry. On the basis of the experimental data obtained, the enthalpy of formation of partheite of theoretical composition Ca2[Al4Si4O15(OH)2] · 4H2O from the elements was evaluated, ?10052 ± 21 kJ/mol.  相似文献   

6.
Cluster analysis of the crystal structures of paulingite zeolites (Na,Ca0.5,K,K,Ba0.5)10[Al10Si32O84] · 30H2O (PAU, space group Im [`3]\bar 3 m) has been performed by the tiling method with the TOPOS program package. The tetrahedral T framework of PAU with 672 tetrahedra in the translated unit cell with a = 35.1 ? and V = 43 217 ?3 has been completely decomposed into tiles, complementarily connected polycyclic (polyhedral) T clusters. The zeolite structure is represented by an ensemble consisting of nine geometrically different nanoclusters containing 16 to 48 T tetrahedra (the linear dimensions of the nanoclusters are 12 to 18 ?, respectively). The nanoclusters correspond to seven topologically different types of tiles: 48T-grc (2a), 32T-pau (12e), 30T-plg (16f), 24T-phi (24h), 20T-gsm (12d), 16T-opr (6b, 12e), and 16T-oto (24h, 48k). In the tiles, the positions occupied by extraframework cations A = Na+/Ca2+ and B = K+/Ba2+ have been determined. The characteristic arrangement of the Na+/Ca2+ cations only at the centers of the 8T rings has been revealed, and for them a new equivalent position in the 16T-opr (6b) tile has been determined. A common crystal-chemical formula of paulingite family zeolites has been obtained: (A,B0.5)154[T672O1344wH2O; for the two outermost members, this formula takes the form A154[T672O1344wH2O and B77[T672O1344wH2O. The composition of the alkaline Na,K-paulingite A154T672O1344·wH2O = Na82K72[Al154Si518O1344] ·wH2O corresponds to the model of a structure with a maximal (100%) and ordered filling of the A cation positions: in the 16T-oto (24h, 48k) tiles for K+ and in the 20T-gsm (12d), 30T-plg (16f), and 16T-opr (6b, 12e) tiles for Na+. Such a distribution and the overall number of Na and K atoms are in good agreement with the data for synthetic paulingite analogues the (Na87K72TEA15)[Al164Si508O1344wH2O aluminosilicate and (Na84.5K70.5TEA24.7)[Ga179.7Si492.3O1344wH2O gallosilicate.  相似文献   

7.
[TMPA]4[Si8O20] · 34 H2O ( 1 ) and [DDBO]4[Si8O20] · 32 H2O ( 2 ) have been prepared by crystallization from aqueous solutions of the respective quaternary alkylammonium hydroxide and SiO2. The crystal structures have been determined by single-crystal X-ray diffraction. 1 : Monoclinic, a = 16.056(2), b = 22.086(6), c = 22.701(2) Å, β = 90.57(1)° (T = 210 K), space group C2/c, Z = 4. 2 : Monoclinic, a = 14.828(9), b = 20.201(7), c = 15.519(5) Å, β = 124.13(4)° (T = 255 K), space group P21/c, Z = 2. The polyhydrates are structurally related host-guest compounds with three-dimensional host frameworks composed of oligomeric [Si8O20]8? anions and H2O molecules which are linked via hydrogen bonds. The silicate anions possess a cube-shaped double four-ring structure and a characteristic local environment formed by 24 H2O molecules and six cations (TMPA, [C8H20N2]2+, or DDBO, [C8H18N2]2+). The cations themselves reside as guest species in large, irregular, cage-like voids. Studies employing 29Si NMR spectroscopy and the trimethylsilylation method have revealed that the saturated aqueous solutions of 1 and 2 contain high proportions of double four-ring silicate anions. Such anions are also abundant species in the saturated solution of the heteronetwork clathrate [DMPI]6[Si8O18(OH)2] · 48.5 H2O ( 3 ) with 1,1-dimethylpiperidinium (DMPI, [C7H16N]+) guest cations.  相似文献   

8.
Two rare earth vanadyl complexes incorporating N-(p-benzoic acid methylene)imino dimethylene phosphonic acid, {[Ce(H2O)7]2[V10O28]}·11H2O (1) and {[Gd(H2O)7]2[V10O28]}·11H2O (2) were synthesized and characterized by IR spectra, UV-Vis spectra, Fluorescence spectra and single crystal X-ray analysis. In complexes 1 and 2, they are isomorphism, triclinic, space group P-1, V5+ ion for the hexa-coordinate with oxygen constitute [V10O28] 6− cluster, in which oxygen were taken μ1, μ2, μ3, μ6 method of allocation. Ce3+ ion is nine-coordinate. Complex 1 has a very strong selective of Zn2+ from the fluorescence spectra, and can as highly selective probes for Zn2+.  相似文献   

9.
The heteropolytungstate (NH4)20[Na2(H2O)2Ni(H2O)5{Ni(H2O)}2As4W40O140] · 61H2O is obtained by the reaction of Na27[NaAs4W40O140] · 60H2O with NiCl2 · 6H2O and NH4Cl in pH≈4.0. The structure and chemical composition are determined by X-ray diffraction analysis and element analysis. The crystal data and main structure refinement are: a = 1.33135(18) nm, b = 1.9722(3) nm, c = 3.6430(5) nm, α = 78.010(2)°, β = 82.145(2)δ, γ = 74.385(2)°, V = 8.978(2) nm3, triclinic crystal system, space group: P1, Z = 2, R1 = 0.0512, and wR2 = 0.0684(I >2σ). The four S2 sites of the big cyclic ligand [As4W40O140]28- are occupied by two Na+ and two Ni2+ respectively, and each site supplies four Od coordinating to metal ion. The coordination number of Ni2+ is six, and that of two Na+ is five and six respectively. The third Ni2+ locates outside the cyclic [As4W40O140]28- and connects with one Od, and its coordination number is six.  相似文献   

10.
The Rietveld method is used to determine the structure of two samples of high-hydrated zeolite paranatrolite: {Na1.15Ca0.38Sr0.04(H2O)3.1}[Al2.19Si2.81O10] (Vishnevye Mountains, Urals) and {Na2.01K0.04H0.04(H2O)3.8}[Al2.10Si2.90O10] (Kirov Mine, Khibiny Massif). Paranatrolite from the Vishnevye Mountains is characterized by the presence of split water positions and a relatively low total H2O content. Local water-cation assemblages (WCAs) of three configurations are identified in the statistical “mixture”. The extraframework subsystem in the structure of Khibiny paranatrolite is made of WCAs of one configuration. The H2O content of this mineral is close to the maximum possible amount and is a recordbreaker for natrolite-type minerals.  相似文献   

11.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

12.
The reactions of the [Mo33-Q)(μ2-Q)3(H2O)3(C2O4)3]2− complex (Q = S or Se) with CuX salts (X = Cl, Br, I, or SCN) in water produce the cuboidal heterometallic clusters [Mo3(CuX)(μ3-Q)4(H2O)3(C2O4)3]2−, which were isolated as the potassium and tetraphenylphosphonium salts. Two new compounds, K2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3]·6H2O and (PPh4)2[Mo3(CuBr)(μ3-S)4(H2O)3(C2O4)3]·7H2O, were structurally characterized. All compounds were characterized by elemental analysis and IR spectroscopy. The K2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] compound was characterized by the 77Se NMR spectrum; the (PPh4)2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3], (PPh4)2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] and K2[Mo3(CuSCN)(μ3-S)4(H2O)3(C2O4)3]·7H2O compounds, by electrospray mass spectra. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1639–1644, September, 2007.  相似文献   

13.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

14.
The compounds [Ni(H2O)2(En)2][{Ni(En)2}Re6S8(OH)6] · 7H2O (I), [{Cu(En)2}Re6S8(H2O)2(OH)4] · 4H2O (II), and [Ni(H2O)2(En)2]0.5[Re6Se8(H2O)3(OH)3] · 10H2O (III) were synthesized by layering aqueous solutions of Ni(En)2Cl2 or Cu(En)2Cl2 (En is ethylenediamine) onto aqueous solutions of the potassium salts of the corresponding octahedral chalcohydroxo rhenium cluster complexes [Re6Q8(OH)6]4− (Q = S, Se). The structure of the obtained compounds was determined by X-ray diffraction analysis.  相似文献   

15.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

16.
A novel tetramethylammonium aluminosilicate hydrate with the approximate composition [NMe4]6[AlxSi8?xO18?x(OH)2+x] · 44H2O (x = 3–4) has been identified by powder X-ray diffraction as a component in a polyphasic solid mixture which crystallized at room temperature from an aqueous NMe4OH? Al2O3? SiO2 solution. Large crystals of the novel hydrate phase could be mechanically selected from that mixture. The crystal structure has been determined from 1 196 unique MoKα diffraction data measured at 180 K: Tetragonal crystal system, cell constants a = 16.181(4) and c = 17.450(4) Å, space group P4/mnc with Z = 2 formula units per unit cell, R = 0.072. The host-guest compound is of polyhedral clathrate type with a mixed three-dimensional, (mainly) four-connected network composed of oligomeric aluminosilicate anions [AlxSi8?xO18?x(OH)2+x]6? and H2O molecules linked via hydrogen bonds O? H …? O. The aluminosilicate anions possess a cube-shaped (double four-ring) structure. Orientationally disordered cationic guest species NMe4+ are enclosed in the large [4668] and [4151067] polyhedral voids of the host framework; the small [46] cages (i.e. the double four-ring anions) and [4356] cages are empty. The hydrate is a further member in a recently discovered series of clathrates with mixed tetrahedral networks, which provides a structure-chemical link between zeolite- and clathrate hydrate-type host-guest compounds.  相似文献   

17.
Two mixed‐metal‐center inorganic‐organic hybrid frameworks incorporating N‐(Phosphonomethyl)iminodiacetate(H4pmida), [Zn2V2O2(pmida)2(H2O)10]·H2O ( 1 ) and [Zn2V2O2(pmida)2(H2O)12]·2H2O ( 2 ), were synthesized by hydrothermal reactions and characterized by elemental analysis, IR spectra, UV‐Vis spectra and single crystal X‐ray analysis. In complex 1 , the centrosymmetric dimeric [V2O2(pmida)2]4– unit connected to neighboring Zn2+ through the phosphonate group, while 2 the [V2O2(pmida)2]4– unit uncoordinated with the Zn2+ in the presence of NaOH. Magnetic measurements in the range 2‐300 K have shown weak antiferromagnetic interaction between the adjacent vanadium ions in complexes.  相似文献   

18.
On the Constitution of Silicate Anions in Cobalt Ethylenediamine Silicate A crystalline and acid-soluble silicate of the composition 1 Co2O3 · 6 en · 7.2 SiO2. 26 H2O was obtained by the reaction of cobalt ethylenediaminehydroxide solution with tetramethoxysilane. Chemical, kinetic, chromatographic, and x-ray investigations showed that this silicate is an acid double four-ring silicate of the formular [Co(en)3]2[H3Si8O20] · 16–28 H2O. The preparation of a cobalt propylenediamine (l,2 and 1,3)-silicate is described.  相似文献   

19.
Four complex salts with the polyatomic [Rh(NH3)6]3+ cation are synthesized and studied by X-ray diffraction. The crystallographic characteristics of [Rh(NH3)6](WO4)Cl are determined and the structures of [Rh(NH3)6]Cl3, [Rh(NH3)6](ReO4)3·2H2O, and [Rh(NH3)6](MoO4)Cl·3H2O are solved. The features of mutual packing of the fragments are studied.  相似文献   

20.
The reaction of NiCl2, K2C2O4·H2O and 2,2′‐bipyridine (bpy) in water–ethanol solution at 281 K yields light‐purple needles of the new pentahydrate of bis(2,2′‐bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep‐pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán‐Miralles & Beitia (1995), Polyhedron, 14 , 2863–2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π–π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号