首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘星 《运筹与管理》2020,29(12):23-29
鉴于灾害救援运作的紧迫性和重要性,考虑需求、供应、成本等参数的不确定性,构建一个由供应商、救援配送中心和受灾区域构成的三级应急救援供应链,旨在确定救援产品数量及救援配送中心的合适位置,以最小化救援供应链总成本,最大化受灾区域满意水平为目标,采用区间数据鲁棒优化方法处理模型的不确定性,应用情景随机规划降低鲁棒优化的计算难度,最后给出一个地震案例的具体数据来证明所提救援供应链鲁棒优化模型的有效性和可行性。实验结果表明,需求保守度的变化对目标函数值的影响大于供给和成本保守度的变化,可为应急救援决策者调整不确定参数保守度提供理论支持。  相似文献   

2.
Traditionally, mining engineers plan an open pit mine considering pre-established conditions of operation of the plant(s) derived from a previous plant optimization. By contrast, mineral processing engineers optimize the processing plants by considering a regular feed from the mine, with respect to quantity and quality of the materials. The methods implemented to optimize mine and metallurgical plans simultaneously are known in the mining industry as global or simultaneous optimizers. The development of these methods has been of major concern for the mining industry over the last decade. Some algorithms are available in commercial mining software packages however, these algorithms ignore the inherent geological uncertainty associated with the deposit being considered, which leads to shortfalls in production, quality, and expected cashflows. This paper presents a heuristic method to generate life-of-mine production schedules that consider operating alternatives for processing plants and incorporate geological uncertainty. The method uses iterative improvement by swapping periods and destinations of the mining blocks to generate the final solution. The implementation of the method at a copper deposit shows its ability to control mine and processing capacities while increasing the expected net present value by 30% when compared with a solution generated using a standard industry practice.  相似文献   

3.
A multi-period stochastic planning model has been developed and implemented for a supply chain network of a petroleum organization operating in an oil producing country under uncertain market conditions. The proposed supply chain network consists of all activities related to crude oil production, processing and distribution. Uncertainties were introduced in market demands and prices. A deterministic optimization model was first developed and tested. The impact of uncertainty on the supply chain was studied by performing a sensitivity analysis in which ±20% deviations were introduced in market demands and prices of different commodities. A stochastic formulation was then proposed, which is based on the two-stage problem with finite number of realizations. The proposed stochastic programming approach proved to be quite effective in developing resilient production plans in light of high degree of uncertainty in market conditions. The anticipated production plans have a considerably lower expected value of perfect information (EVPI). The main conclusion of this study is that for an oil producing country with oil processing capabilities, the impact of economic uncertainties may be tolerated by an appropriate balance between crude exports and processing capacities.  相似文献   

4.
Increasing global competition, quality standards, environmental awareness and decreasing ore prices impose new challenges to mineral industries. Therefore, the extraction of mineral resources requires careful design and scheduling. In this research, simulated annealing (SA) is recommended to solve a mine production scheduling problem. First of all, in situ mineral characteristics of a deposit are simulated by sequential Gaussian simulation, and averaging the simulated characteristics within specified block volumes creates a three-dimensional block model. This model is used to determine optimal pit limits. A linear programming (LP) scheme is used to identify all blocks that can be included in the blend without violating the content requirements. The Lerchs–Grosmann algorithm using the blocks identified by the LP program determines optimal pit limits. All blocks that lie outside of the optimal pit limit are removed from the system and the blocks within the optimal pit are submitted to the production scheduling algorithm. Production scheduling optimization is carried out in two stages: Lagrangean parameterization, resulting in an initial sub-optimal solution, and multi-objective SA, improving the sub-optimal schedule further. The approach is demonstrated on a Western Australian iron ore body.  相似文献   

5.
A spatial price equilibrium problem is modeled which allows piecewise linear convex flow costs, and a capacity limit on the trade flow between each supply/demand pair of regions. Alternatively, the model determines the locations of intermediate distribution centers in a market economy composed of separate regions, each with approximately linear supply and demand functions. Equilibrium prices, regional supply and demand quantities, and commodity flows are determined endogenously. The model has a quadratic programming formulation which is then reduced by exploiting the structure. The reduced model is particularly well suited to solution using successive over-relaxation.  相似文献   

6.
This research is motivated by an automobile manufacturing supply chain network. It involves a multi-echelon production system with material supply, component fabrication, manufacturing, and final product distribution activities. We address the production planning issue by considering bill of materials and the trade-offs between inventories, production costs and customer service level. Due to its complexity, an integrated solution framework which combines scatter evolutionary algorithm, fuzzy programming and stochastic chance-constrained programming are combined to jointly take up the issue. We conduct a computational study to evaluate the model. Numerical results using the proposed algorithm confirm the advantage of the integrated planning approach. Compared with other solution methodologies, the supply chain profits from the proposed approach consistently outperform, in some cases up to 13% better. The impacts of uncertainty in demand, material price, and other parameters on the performance of the supply chain are studied through sensitivity analysis. We found the proposed model is effective in developing robust production plans under various market conditions.  相似文献   

7.
Similar to the mixed-integer programming library (MIPLIB), we present a library of publicly available test problem instances for three classical types of open pit mining problems: the ultimate pit limit problem and two variants of open pit production scheduling problems. The ultimate pit limit problem determines a set of notional three-dimensional blocks containing ore and/or waste material to extract to maximize value subject to geospatial precedence constraints. Open pit production scheduling problems seek to determine when, if ever, a block is extracted from an open pit mine. A typical objective is to maximize the net present value of the extracted ore; constraints include precedence and upper bounds on operational resource usage. Extensions of this problem can include (i) lower bounds on operational resource usage, (ii) the determination of whether a block is sent to a waste dump, i.e., discarded, or to a processing plant, i.e., to a facility that derives salable mineral from the block, (iii) average grade constraints at the processing plant, and (iv) inventories of extracted but unprocessed material. Although open pit mining problems have appeared in academic literature dating back to the 1960s, no standard representations exist, and there are no commonly available corresponding data sets. We describe some representative open pit mining problems, briefly mention related literature, and provide a library consisting of mathematical models and sets of instances, available on the Internet. We conclude with directions for use of this newly established mining library. The library serves not only as a suggestion of standard expressions of and available data for open pit mining problems, but also as encouragement for the development of increasingly sophisticated algorithms.  相似文献   

8.
Procurement is a critical supply chain management function that is susceptible to risk, due mainly to uncertain customer demand and purchase price volatility. A procurement approach in the form of a portfolio that incorporates the common procurement means is proposed. Such means include long-term contracts, spot procurements and option-based supply contracts. The objective is to explore possible synergies among the various procurement means, and so be able to produce optimal or near optimal results in profit while mitigating risk. The implementation of the portfolio approach is based on a multi-stage stochastic programming model in which replenishment decisions are made at various stages along a time horizon, with replenishment quantities being determined by simultaneously considering the stochastic demand and the price volatility of the spot market. The model attempts to minimise the risk exposure of procurement decisions measured as conditional value-at-risk. Numerical experiments to test the effectiveness of the proposed model are performed using demand data from a large air conditioner manufacturer in China and price volatility data from the Shanghai steel market. The results indicate that the proposed model can fairly reliably outperform other approaches, especially when either the demand and/or prices exhibit significant variability.  相似文献   

9.
In this paper, a robust bi-level optimization model is developed for a supply–distribution relief network under uncertainty in demand and supply parameters. It optimizes the relief operating costs as well as considering a penalty term for unsatisfied victims’ demands. Moreover, the proposed framework optimizes the relief commodity flow in a relief chain along with the supply risk minimization by identifying the suppliers with a lower risk. This paper proposes an integrated optimization method in which the supply risk value for each supplier is obtained via the TOPSIS method. Next, these values are utilized in a robust bi-level model to select appropriate suppliers and allocate orders. Finally, the robustness and effectiveness of the proposed model are demonstrated by a case of flood disaster.  相似文献   

10.
Economic characterization of mining parcels depends upon geo-metallurgical properties, which vary throughout orebody. Mine production scheduling should aim to obtain maximum utility from orebody in such a way as to ensure mine–mill reconciliation. As heterogeneity of geo-metallurgical variables increases, the scheduling will be a very complicated task. Geo-metallurgical and financial data used in the mine production scheduling are based on simulation and/or estimation generated from sparse drilling and unknown future events. Therefore, the scheduling process involves a significant degree of uncertainty. In order to deal with the uncertainty stemmed from geo-metallurgical and financial variables, two approaches are recommended in this paper. Firstly, mine production scheduling is formulated as a problem of stochastic programming with recourse. The extraction periods of mining blocks are treated as the first-stage variables and the block destinations represents a recourse vector. It is observed that the solution is implicitly robust. Secondly, the scheduling is expressed as a maximin problem to extract more uniform metal quantity in periods to coincide with mill requirements instead of maximization of net present value because the blending constraint in the traditional approach forces more uniform production. In the case where there is correlation between grade and geo-metallurgical variables, this model generates reasonably good results.  相似文献   

11.
This paper explores the relationships between money, prices, uncertainty and interest rates in a stochastic general equilibrium model. Taking a non-aggregate pure exchange economy with time and uncertainty as the starting point, money is introduced as a means to keep track of past transactions of goods and insurance services and as an instrument to settle debts. As a result, in this stochastic general equilibrium model the desire to hold money arises from the demand of goods and services, Arrow-Debreu securities, and assets. Since these sources of demand for money are strongly related to the economy output, the economy degree of uncertainty, and the interest rates, this paper provides not only an alternative framework to the traditional keynesian analysis of the liquidity preference, but also an extension of the cash-in-advance models for introducing money in a general equilibrium model.  相似文献   

12.
This paper addresses the problem of mitigating procurement risk that arises from volatile commodity prices by proposing a hedging strategy within a multi-stage time frame. The proposed multi-stage hedging strategy requires a commodity futures position to be correctly initialised and rebalanced with adequate volumes of short/long positions, so as to reduce the volatility in the total procurement cost that would otherwise be generated by varying commodity spot prices. The novelty in the approach is the introduction of the rebalancing of commodity futures position at defined intermediate stages. To obtain an efficient or near optimal multi-stage hedging strategy, a discrete-time stochastic control model (DSCM) is developed. Numerical experiments and Monte Carlo simulation are used to show that the proposed multi-stage hedging strategy compares favourably with the minimal-variance hedge and the one-stage hedge. A close-form optimal solution is also presented for the case when procurement volume and price are independent.  相似文献   

13.
From standard economic theory, the market clearing price for a commodity is set where the demand and supply curves intersect. Convexity is a property that economic models require for a competitive equilibrium, which is efficient and well-behaved and provides equilibrium prices. However, some markets present non-convexities due to their cost structure or due to some operational constraints that need to be addressed. This is the case for electricity markets where the electricity producers incur costs for shutting down a generating unit and then bringing it back on. Non-convex cost structures can be a challenge for the price discovery process, since the supply and demand curves may not intersect, or if they intersect, the price found may not be high enough to cover the total cost of production. We apply a Semi-Lagrangean approach to find a price that can be applied in the electricity pool markets where a central system operator decides who produces and how much they should produce. By applying the model to an example from the literature, we found prices that are high enough to cover the producer’s total costs, and follows the optimal solution for achieving mining cost in production. The prices are an alternative solution to the price discovery problem in non-convexities economies; in addition, they provide nonnegative profits to all the generators without the use of side-payments or up-lifts, and closes the integrality gap.  相似文献   

14.
The determination of the “optimum pit limit” of a mine is considered to be a fundamental problem in mine planning as it provides information which is essential in the evaluation of the economic potential of a mineral deposit, and in the formulation of long-, intermediate-, and short-range mine plans. A number of mathematical techniques have been proposed to solve this problem, some of the more elaborate ones posing considerable computational problems. In this paper we discuss the development and implementation of a graph-theoretic technique originally proposed by Lerchs and Grossman. Our implementation strategy involves the use of a dynamic programming technique to “bound” the optimum.  相似文献   

15.
ABSTRACT

We study four-echelon supply chains consisting of manufacturer, wholesaler, retailer and customer with recovery center as hybrid recycling channels. In order to gain a larger market share, the retailer often takes the sales as a decision-making variable. For this purpose, in this supply chain, the retailer limits the forecast of market demand in future periods with expected logic. It also manages demand by leveraging prices and choosing market. In this paper, first, we investigate the state-space model of this supply chain system and examine the effect of complex dynamic and stochastic noise on the bullwhip effect. We analytically prove that this factor leads to the bullwhip effect. So, first, we filtered the information between nodes with extended Kalman filter after which we regulated the destructive effects of the bullwhip phenomenon by designing a non-linear quadratic Gaussian optimal controller. Eventually, the simulation results indicate the efficiency of the proposed method.  相似文献   

16.
In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.  相似文献   

17.
This paper proposes a production and differential pricing decision model in a two-echelon supply chain that involves a demand from two or more market segments. In this framework, the retailer is allowed to set different prices during the planning horizon. While integrated production-marketing management has been a key research issue in supply chain management for a long time, little attention has been given to set prices and marketing expenditures in integrated multi-site (parallel) manufacturing systems and multiple demand classes. Generally, the presence of multiple demand classes induced by different market segments may impose demand leakage and then change production plan and ordering policies throughout the supply chain system. To tackle this problem, this paper develops a novel approach in order to provide an optimal aggregate production and marketing plan by interconnecting the sales channels of the retailer and demand. A non-linear model is established to determine optimal price differentiation, marketing expenditures and production plans of manufacturing sites in a multi-period, multi-product and multi-sale channels production planning problem by maximizing total profit of the supply chain. To handle the model and obtain solutions, we propose an efficient analytical model based upon convex hulls. Finally, we apply the proposed procedure to a clothing company in order to show usefulness and significance of the model and solution method.  相似文献   

18.
This paper develops a modeling and computational framework for supply chain networks with global outsourcing and quick-response production under demand and cost uncertainty. Our model considers multiple off-shore suppliers, multiple manufacturers, and multiple demand markets. Using variational inequality theory, we formulate the governing equilibrium conditions of the competing decision-makers (the manufacturers) who are faced with two-stage stochastic programming problems but who also have to cooperate with the other decision-makers (the off-shore suppliers). Our theoretical and analytical results shed light on the value of outsourcing from novel real option perspectives. Moreover, our simulation studies reveal important managerial insights regarding how demand and cost uncertainty affects the profits, the risks, as well as the global outsourcing and quick-production decisions of supply chain firms under competition.  相似文献   

19.
In this paper we develop a stochastic programming approach to solve a multi-period multi-product multi-site aggregate production planning problem in a green supply chain for a medium-term planning horizon under the assumption of demand uncertainty. The proposed model has the following features: (i) the majority of supply chain cost parameters are considered; (ii) quantity discounts to encourage the producer to order more from the suppliers in one period, instead of splitting the order into periodical small quantities, are considered; (iii) the interrelationship between lead time and transportation cost is considered, as well as that between lead time and greenhouse gas emission level; (iv) demand uncertainty is assumed to follow a pre-specified distribution function; (v) shortages are penalized by a general multiple breakpoint function, to persuade producers to reduce backorders as much as possible; (vi) some indicators of a green supply chain, such as greenhouse gas emissions and waste management are also incorporated into the model. The proposed model is first a nonlinear mixed integer programming which is converted into a linear one by applying some theoretical and numerical techniques. Due to the convexity of the model, the local solution obtained from linear programming solvers is also the global solution. Finally, a numerical example is presented to demonstrate the validity of the proposed model.  相似文献   

20.
As demand uncertainty grows in the marketplace, a critical issue today in most purchase contract negotiations between an independent retailer of a style-good and its supplier is the provision of a returns policy, i.e., a commitment by the supplier to buy back unsold inventory of the good at the end of its selling season. Management science research on the strategic role and optimal design of returns policies has grown in recent years but so far offers little treatment of how exactly the retailer's optimal order quantity decisions are affected by demand uncertainty and how a supplier's returns policy can influence these decisions. Employing the traditional “newsboy problem” modeling framework, the authors investigate these issues considering a supplier who faces a retailer with two or more store outlets with normally distributed and possibly correlated demands. To facilitate their analyses, the authors employ a methodology based on special error function representations of the highly nonlinear objective functions of the retailer and supplier. Utilizing this approach, the authors are able to provide explicit insights into how: (a) the buyer's total order quantity decision is affected by the variability in demand; (b) buyback prices in combination with wholesale prices can influence the buyer's order quantity response to demand uncertainty; (c) demand uncertainty moderates the effects of the buyback and wholesale prices; (d) supplier's optimal combination of actions are affected by demand variability; (e) retailer's and supplier's expected profits behave in response to changes in the supplier's actions under different levels of demand variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号