首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for analyzing the thermodynamical manifestations of solvophobic effects is proposed on the basis of considering the relationship between the Gibbs energy and solvation enthalpy of nonelectrolytes. It is demonstrated that, for solutions in nonassociated solvents, there is a linear isoequilibrium dependence between them, and the coefficients of linear dependence are almost equivalent for various dissolved substances and solvents. It is determined that the deviations from this dependence observed in the case of associated solvents are always positive, and the consequences of the manifestations of solvophobic effects are considered. The contributions from the solvophobic effect to the Gibbs energy of solvation of various nonpolar compounds in methanol are determined on the basis of a thermodynamic model of solvation suggested earlier. It is shown that in both methanol and aqueous solutions, the values of these contributions correlate linearly with the characteristic molecular volume of the dissolved substance.  相似文献   

2.
We propose a method for calculating the Gibbs energies of hydrogen bonding of solutes with associated solvents via the thermodynamic analysis of experimental values of solvation Gibbs energies. The method is applied to solutions of different proton acceptors in methanol. It is shown that the contribution of hydrogen bonding processes to the solvation Gibbs energy in methanol is in most cases very different in magnitude from the formation Gibbs energy of equimolar complexes of the solute and methanol. We demonstrate the need to include the contributions from solvophobic effects in investigating intermolecular interactions in associated solvents by means of thermodynamic data.  相似文献   

3.
Using semi-adiabatic calorimetry, we measured the enthalpies of solution for various low-polar compounds including alkanes, aromatic hydrocarbons and their halogenated derivatives in formamide at temperature of 298 K. For the same compounds, the values of limiting activity coefficients in formamide were determined using GC headspace analysis at 298 K, and Gibbs free energies of solution and solvation were calculated. Based on these data and the available literature values of the Gibbs free energy of solvation in formamide for a number of other low-polar solutes, a study of the solvophobic effect in this solvent is performed, and its resemblance to the hydrophobic effect in aqueous solutions is demonstrated. It is shown that the contribution of the solvophobic effect into the solvation Gibbs free energy in formamide is much higher than that in aliphatic alcohols, but lower than that in water. Like in water, the magnitude of this contribution for different solutes linearly increases with the solute molecular volume. Solvophobic effect also significantly affects the enthalpies of dissolution in formamide, causing them to be more negative in the case of alkanes and more positive in the case of arenes.  相似文献   

4.
By using the van’t Hoff and Gibbs equations the thermodynamic functions Gibbs free energy, enthalpy, and entropy of solution, were evaluated from solubility data of naproxen (NAP) determined at several temperatures in octanol, isopropyl myristate, chloroform, and cyclohexane, as pure solvents. The water-saturated organic solvents also were studied except cyclohexane. The excess free energy and the activity coefficients of the solutes, and the mixing and solvation thermodynamic quantities were also determined. The NAP solubilities were higher in chloroform and octanol with respect to those obtained in cyclohexane. In addition, by using literature values for NAP aqueous solubility, the thermodynamic functions relative to transfer of this drug from water to organic solvents were also estimated.  相似文献   

5.
Experimental data of amphiphiles aggregation phenomena in water-organic solvent mixtures were considered with the idea of investigating the role of the solvophobic effect on micellization. Changes in the critical micelle concentration, in the micellar ionization degree (for ionic surfactants) and in the aggregation number accompanying variations in the composition of the bulk phase of the micellar solutions were examined with the scope of understanding which properties of the water-organic solvent mixtures are important in the micellization process. Results point out that the cohesive energy density, measured either through the Hildebrand-Hansen solubility parameter or the Gordon parameter, seems to play an important role in determining the contribution of the solvophobic effect on the Gibbs energy of micellization in water-organic solvents mixtures.  相似文献   

6.
An expression based on the Fröhlich theorem is given for the anisotropic inertial solvation potential of solutions. The principle of the additivity of the anisotropic inertial solvation potentials of solution components is put forward and substantiated. A model thermodynamic function of the anisotropic inertial solvation potential of a binary solution is suggested. The effect of formation of 1:1 complexes and bimolecular associates on the anisotropic inertial solvation potential of a binary solution is analyzed. The composition dependences of the anisotropic inertial solvation potentials of binary solutions of nitrobenzene, acetonitrile, nitromethane, and tetrachloromethane in associated and nonassociated polar and nonpolar solvents and in water are determined. The dependences obtained are compared to the corresponding model functions. Changes in the contribution of specific intermolecular interactions to the anisotropic inertial term of the Helmholtz energy of solvation of binary solutions are revealed by this method. Previously unknown anisotropic inertial solvation potentials are obtained for associated and polar nonassociated liquids in relation to their content in hexane. Conclusions on the magnitude and character of changes in the microstructure of solutions are made. The transformation of the anisotropic inertial to isotropic noninertial term of the Helmholtz energy of solvation is noted by the example of a solution with the ethanol volume fraction in hexane of 0.13.  相似文献   

7.
The stability constants of 1 : 1 complexes of ammonium ion with 18-crown-6 in water and aqueous dioxane (dioxane weight fraction 0.2, 0.4, 0.6, and 0.8) in the range 283-318 K were determined electrometrically, and the thermodynamic parameters of the complexation were calculated. The stability of the complexes is determined by the enthalpy factor. The contributions from the Gibbs energy of solvation of NH4 + ion, 18-crown-6·NH4 + complex, and free 18-crown-6 to stabilization of the complex with increasing content of dioxane in the mixed solvent were estimated. The thermodynamics of complexation of ammonium, sodium, and potassium ions with 18-crown-6 in aqueous-organic solvents, such as water-2-propanol, water-acetone, and water-dioxane, were compared considering the effects of reactant solvation. The variations of the conformational component of the Gibbs energy of solvation of 18-crown-6 and the parameters of selective solvation of the reactants were evaluated. The influence of the dielectric permittivity and donor-acceptor properties of mixed aqueous-organic solvents on the Gibbs energy of complexation and solvation of the cations and 18-crown-6 was subjected to correlation analysis.  相似文献   

8.
The standard changes in enthalpy during the solvation of 1,4-dioxane in methanol, ethyl acetate, DMF, and acetonitrile were determined from calorimetric data and compared with the literature data for a series of solvents with different polarities. The standard changes in the Gibbs energy during the solvation of 1,4-dioxane in a wide series of solvents were calculated from the activity coefficients reported in the literature. The variation of the solvation functions of low-polar 1,4-dioxane in the series of solvents was found to be consistent with the enthalpy-entropy compensation rule. The results for 1,4-dioxane were compared with those for its open-chain analog and related large cyclic molecules. The electrostatic interactions of the solute with the solvents did not markedly affect the thermodynamic characteristics of ether in media with different polarities, but affected the interaction of the solute with the solvent more significantly. The solvation of the small ring of 1,4-dioxane in aprotic solvents was accompanied by a more significant exothermal effect than in the case of its open-chain analog. The conclusion was drawn that the enthalpies of the formation of hydrogen bonds between 1,4-dioxane and the associated water and chloroform molecules in solution were smaller in magnitude than the bonds of the similar open-chain polyether.  相似文献   

9.
A method for calculating the Gibbs energy of nonspecific solvation of nonelectrolytes was suggested. The new equation for the Gibbs energy of nonspecific solvation contains one solvent parameter that characterize nonspecific solvent-solute interactions and two experimental Gibbs energies of solvation in two standard solvents. The method is applicable to a wide range of solutes and solvents. It was successfully used to describe some 800 Gibbs energies of solvation for systems without specific solvent-solute interactions.  相似文献   

10.
General trends in the variation of thermodynamic parameters of complex formation of crown ethers with d-metal ions in binary nonaqueous solvent mixtures were determined. An equation was proposed for predicting variation of the stability of coordination compounds upon replacement of one nonaqueous solvent by another on the basis of the change in the Gibbs energy of solvation of the central ion. Calculation of the Gibbs energies for the formation of the [Ag18C6]+ ion in acetonitrile and a number of nonaqueous solvents confirmed the predictive ability of the proposed equation.  相似文献   

11.
The solubility of piroxicam (PIR) in several ethanol + water mixtures was determined at five temperatures from 293.15 to 313.15 K. The thermodynamic functions; Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data and the drug properties of fusion by using the van’t Hoff and Gibbs equations. The greatest solubility value was obtained in pure ethanol. A non-linear enthalpy–entropy relationship was observed from a plot of enthalpy versus Gibbs energy of solution. Accordingly, the driving mechanism for PIR solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug’s non-polar moieties by ethanol, whereas, in ethanol-rich mixtures the driving mechanism is the enthalpy, probably due to better PIR solvation by the co-solvent molecules. The solubilities and the derived thermodynamic properties in mixed solvents were correlated using the Jouyban–Acree model.  相似文献   

12.
The thermodynamic functions Gibbs energy, enthalpy and entropy of solution, mixing and solvation of acetaminophen in propylene glycol (PG) + ethanol (EtOH) cosolvent mixtures were evaluated from solubility data measured at several temperatures, using the van't Hoff and Gibbs equations. The solubility was greater at 50% m/m of PG at 20.0^C, while it was greater at 80% of PG at 40.0 ^C where m/m refers to mass percent. The solvation of this drug is appreciably greater in the mixtures than in the pure solvents. By means of an enthalpy–entropy compensation analysis, complex behavior was found for the solution. From 0 up to 20% of PG and from 60 up to 100% of PG the solution process is enthalpy driven, whereas from 20 up to 60% of PG it is entropy driven. These facts can be explained in terms of a decrease in the energy required for cavity formation in the solvent for mixtures containing 20–60% of PG.  相似文献   

13.
Single crystal of furazolidone (FZL) has been successfully obtained, and its crystal structure has been determined. Common and distinctive features of furazolidone and nitrofurantoin (NFT) crystal packing have been discussed. Combined use of QTAIMC and Hirshfeld surface analysis allowed characterizing the non-covalent interactions in both crystals. Thermophysical characteristics and decomposition of NFT and FZL have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and mass-spectrometry. The saturated vapor pressures of the compounds have been measured using the transpiration method, and the standard thermodynamic functions of sublimation were calculated. It was revealed that the sublimation enthalpy and Gibbs energy of NFT are both higher than those for FZL, but a gain in the crystal lattice energy of NFT is leveled by an entropy increase. The solubility processes of the studied compounds in buffer solutions with pH 2.0, 7.4 and in 1-octanol was investigated at four temperatures from 298.15 to 313.15 K by the saturation shake-flask method. The thermodynamic functions of the dissolution and solvation processes of the studied compounds have been calculated based on the experimental data. Due to the fact that NFT is unstable in buffer solutions and undergoes a solution-mediated transformation from an anhydrate form to monohydrate in the solid state, the thermophysical characteristics and dissolution thermodynamics of the monohydrate were also investigated. It was demonstrated that a combination of experimental and theoretical methods allows performing an in-depth study of the relationships between the molecular and crystal structure and pharmaceutically relevant properties of nitrofuran antibiotics.  相似文献   

14.
The thermodynamic characteristics of hydrophobic hydration, the Gibbs energies of hydrophobic effect, were calculated. The method for calculations was based on the division of the Gibbs energy of hydration into contributions of nonspecific interactions, specific interactions between solutes and solvents (if they exist), and hydrophobic effect. In the absence of specific interactions between solutes and water, the Gibbs energy of hydrophobic effect depended linearly on the characteristic molecular volume of the solute for substances with different structures and properties. The universality of this dependence allows the suggestion to be made that it remains valid also in the presence of specific interactions. This allows the Gibbs energy of specific interactions in water to be determined for a wide range of compounds, in particular, for aliphatic alcohols.  相似文献   

15.
This paper reports thermodynamic data for the transfer of calixarene derivatives and their metal-ion complexes in dipolar aprotic solvents. These data are used to assess the effect of solvation of these compounds on the selective complexation shown by these macrocycles for soft metal cations in different media. Thus, solubilities and derived Gibbs energies of solution of 5,11,17,23-tetra-tert-butyl[25,27-bis(hydroxyl)-26,28-bis(ethylthioethoxy)]calix(4)arene, 1, and 5,11,17,23-tetra-tert-butyl-[25,27-bis(ethylenethanoate)-26,28-bis(ethylthioethoxy)]-calix(4)arene, 2, in various solvents at 298.15 K are reported. Solvation of these ligands in one medium relative to another is analyzed from their standard transfer Gibbs energies using acetonitrile as the reference solvent. These data are combined with transfer enthalpies (derived from standard solution enthalpies obtained calorimetrically) to calculate the corresponding entropies of transfer of these calix(4)arene derivatives from acetonitrile to methanol and N,N-dimethylformamide. As far as the metal-ion salts (silver and mercury) in their free and complex forms are concerned, standard solution enthalpies were determined in acetonitrile, methanol, and N,N-dimethylformamide. These data are used to derive their transfer enthalpies from one medium to another. It is concluded that the extent of complexation of these macrocycles with soft metal cations is controlled by not only the solvation changes that the free cation undergoes in moving from one medium to another but also those for the ligand and its complex cation in these solvents.  相似文献   

16.
On the basis of the proposed concept of real thermodynamic properties for individual ions in solution, the real thermodynamic properties of transport (resolvation) for various ions (sodium, potassium, chloride, bromide, and iodide) from water to mixtures of water with ethyl, n-propyl, and isopropyl alcohols, acetone, acetonitrile, dimethylsulfoxide, and dimethylformamide are determined by the method of Volta potential differences. Values of the chemical thermodynamic properties of transport of the ions under investigation are determined on the basis of previously calculated values of surface potentials of the solvents mentioned above. A comparative analysis of the values obtained is carried out, and characteristics of the solvation of ions of different sign are established as functions of their nature relative to the physicochemical and structural properties of the solvents. The satisfactory agreement of the data obtained on the basis of the total Gibbs energy of transport of the ions under investigation in the indicated solvents with literature data is the criterion of correctness for the scientific material presented in this paper.  相似文献   

17.
A series of six perylene bisimides (PBIs) with hydrophilic and hydrophobic side chains at the imide nitrogens were applied for a comparative study of the solvent and structural effects on the aggregation behaviour of this class of dyes. A comparison of the binding constants in tetrachloromethane at room temperature revealed the highest binding constant of about 10(5) M(-1) for a PBI bearing 3,4,5-tridodecyloxyphenyl substituents at the imide nitrogens, followed by 3,4,5-tridodecylphenyl and alkyl-substituted PBIs, whereas no aggregation could be observed in the accessible concentration range for PBIs equipped with bulky 2,6-diisopropylphenyl substituents at the imide nitrogens. The aggregation behaviour of three properly soluble compounds was investigated in 17 different solvents covering a broad polarity range from nonpolar n-hexane to highly polar DMSO and water. Linear free energy relationships (LFER) revealed a biphasic behaviour between Gibbs free energies of aggregation and common empirical solvent polarity scales indicating particularly strong π-π stacking interactions in nonpolar aliphatic and polar alcoholic solvents whilst the weakest binding is observed in dichloromethane and chloroform. Accordingly, PBI aggregation is dominated by electrostatic interactions in nonpolar solvents and by solvophobic interactions in protic solvents. In water, the aggregation constant is increased far beyond LFER expectations pointing at a pronounced hydrophobic effect.  相似文献   

18.
The dynamic solvent effect often arises in solution reactions, where coupling between chemical reaction and solvent fluctuation plays a decisive role in the reaction kinetics. In this study, the Z/E isomerization reaction of nitoroazobenzene and benzylideneanilines in the ground state was computationally studied by molecular dynamics simulations. The non-equilibrium solvation effect was analyzed using two approaches: (1) metadynamics Gibbs energy surface exploration and (2) solvation Gibbs energy evaluation using a frozen solvation droplet model. The solute–solvent coupling parameter (Ccoupled) was estimated by the ratio of the solvent fluctuation Gibbs energy over the corresponding isomerization activation Gibbs energy. The results were discussed in comparison with the ones estimated by means of the analytical models based on a reaction–diffusion equation with a sink term. The second approach using a frozen solvation droplet reached qualitative agreement with the analytical models, while the first metadynamics approach failed. This is because the second approach explicitly considers the non-equilibrium solvation in the droplet, which consists of a solute at the reactant geometry immersed in the pre-organized solvents fitted with the solute at the transition state geometry.  相似文献   

19.
The methods for thermodynamic calculations of the equilibria in solutions of mercury salts and complexes are presented. The calculations of equilibrium constants in non-aqueous solvents are based on the transfer activity coefficients of mercury ions from water to the non-aqueous solvent. The dismutation and precipitation reaction constants are calculated, and the redox potentials of mercury systems are measured. Examples of analytical use of the thermodynamic functions of mercury salt solvation are given in the text.  相似文献   

20.
One of two fundamental types of solute–solvent intermolecular interactions are the specific interactions, such as hydrogen bonding complexation between solute and solvent. The Gibbs energy of specific interactions is an important quantity that determines rate and equilibrium constants in solutions, but it is difficult to obtain by direct measurement. We proposed equations allowing to determine the contribution of specific interactions to the Gibbs energy of solvation in nonelectrolyte solutions. Applying it for the case of proton donating solutes with one acidic hydrogen atom dissolved in basic solvents, we obtained the values of the Gibbs energies of 1:1 complexation in pure base. These values have been compared with the Gibbs energies of 1:1 complexation in tetrachloromethane. Most of the hydrogen bonds are found to have the same energy in pure base and in CCl4, however, some weakly bound complexes seem to become even more weakened in pure base medium. Suggested method is applicable in a general situation when multiple associates of different stoichiometry and structure are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号