首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical state analysis by a combination of X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) using synchrotron radiation is performed for β-FeSi2 single crystals and homoepitaxial β-FeSi2 films. The Si 2p XPS and Fe L-edge XAS spectra imply that the annealing at 1173 K to remove native oxide layers on the crystal induces the formation of FeSi in the surface. The formation of FeSi is also confirmed by Si K-edge XAS analysis. For the homoepitaxial β-FeSi2 films grown on the crystals, the Si K-edge XAS spectra indicate that structurally homogeneous β-FeSi2 films can be grown on the β-FeSi2 single crystals when the substrate temperatures of 973 and 1073 K are applied for molecular beam epitaxy (MBE). Consequently, it is indicated that the combination of XPS and XAS using synchrotron radiation is a useful tool to clarify chemical states of β-FeSi2 single crystals and homoepitaxial β-FeSi2 films, which is important to reveal optimized growth conditions of homoepitaxial films.  相似文献   

2.
We have investigated the photoluminescence properties of β-FeSi2 and have subsequently reported many studies on the enhancement of luminescence efficiency. We have further discussed a limit for the luminescence efficiency based on the weak confinement theory of excitons in β-FeSi2 nanocrystals. Moreover, we have reported an application of β-FeSi2 with a high refractive index to photonic crystals.  相似文献   

3.
Eu3+-doped β-Ga2O3 nanofibers were fabricated by electrospinning. The influence of Eu3+ concentration on the photoluminescence properties of the obtained nanofibers was investigated. The morphology and structure of β-Ga2O3:Eu3+ were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectra. The diameter of the Eu3+-doped β-Ga2O3 nanofibers was in the range of 180-300 nm. When the β-Ga2O3:Eu3+ nanofibers were excited by 325 nm wavelength, the main emission peak of the samples was 620 nm (5D07F2), which corresponded to a typical red emission (5D07Fj (j = 1, 2, 3, 4) intra-4f transitions of Eu3+ ions). In addition, the concentration quench effect and energy transfer mechanism in β-Ga2O3:Eu3+ were also discussed.  相似文献   

4.
A transparent electrode of Si doped β-Ga2O3 films for solar cells, flat panel displays and other devices, which consists of chemically abundant and ecological friendly elements of gallium and oxygen, was grown on silicon substrates by RF magnetron sputtering using sintered Ga2O3 and Si target. The Si composition in the β-Ga2O3 film is determined by electron dispersive X-ray spectroscopy. The X-ray photoelectron spectroscopy peak ratio of oxygen over gallium decreases with increasing Si content. It is concluded that Si substitutes for the Ga sites in the β-Ga2O3 film.  相似文献   

5.
Single-phase semiconducting iron disilicide (β-FeSi2) films on silicon substrate were fabricated by electron beam evaporation (EBE) technique. For preventing the oxidation of Fe film, silicon/iron/silicon sandwich structure films with different thickness of silicon and iron were deposited and then annealed at different temperatures. X-ray diffraction (XRD), Raman and Fourier transform infrared spectroscopy (FTIR) measurements were carried out to study the phase distribution and crystal quality of the films. Single-phase β-FeSi2 with high crystal quality was achieved after annealing at 800 °C for 5 h. An apparent direct bandgap Eg of approximately 0.85-0.88 eV was observed in the β-FeSi2 films. It is considered that the silicon/iron/silicon sandwich structure is suited for formation of single-phase β-FeSi2 with high crystal quality.  相似文献   

6.
β-FeSi2 thin films were prepared on FZ n-Si (1 1 1) substrates by pulsed laser deposition (PLD). The structural properties and crystallographic orientation of the films were investigated by X-ray diffraction (XRD) analysis. This indicates that β-FeSi2/Si (2 0 2/2 2 0) and the single-crystalline β-FeSi2 can be prepared using PLD. In photoluminescence (PL) measurements at 8 K detected by Ge detector, the PL spectra of the samples annealed at 900 °C for 1, 5, 8 and 20 h showed that the PL intensity of the A-band peak increased depending on annealing time in comparison with those of as-deposited samples. The intrinsic PL intensity of the A-band peak at 0.808 eV of the β-FeSi2 from the 20-h-annealed sample was investigated for the first time by the PLD method detected by an InGaAs detector. This result has been confirmed by temperature dependence and excitation power density of the 20-h-annealed sample with the comparison of other defect-related band peaks of the sample. Cross-sectional scanning electron microscopy (SEM) observation was also performed and the thickness of the thin films was found to be at 75 nm for 20-h-annealed. The thermal diffusion for the epitaxial growth of β−FeSi2/Si was observed when the compositional ratio of Fe to Si was around Fe:Si=1:2 for 20-h-annealed carried out by energy dispersive X-ray spectroscopy (EDX). We discussed high crystal quality of the epitaxial growth and optical characterization of β-FeSi2 achieved after annealing at 900 °C for 20 h.  相似文献   

7.
This paper reports that the nanostructured β-FeSi2 bulk materials are prepared by a new synthesis process by combining melt spinning(MS) and subsequent spark plasma sintering(SPS).It investigates the influence of linear speed of the rolling copper wheel,injection pressure and SPS regime on microstructure and phase composition of the rapidly solidified ribbons after MS and bulk production respectively,and discusses the effects of the microstructure on thermal transport properties.There are two crystalline phases(α-Fe2Si5 and ε-FeSi) in the rapidly solidified ribbons;the crystal grains become smaller when the cooling rate increases(the 20 nm minimum crystal of ε-FeSi is obtained).Having been sintered for 1 min above 1123 K and annealed for 5 min at 923 K,the single-phase nanostructured βFeSi2 bulk materials with 200-500 nm grain size and 98% relative density are obtained.The microstructure of β-FeSi2 has great effect on thermal transport properties.With decreasing sintering temperature,the grain size decreases,the thermal conductivity of β-FeSi2 is reduced remarkably.The thermal conductivity of β-FeSi2 decreases notably(reduced 72% at room temperature) in comparison with the β-FeSi2 prepared by traditional casting method.  相似文献   

8.
周传仓  刘发民  丁芃 《中国物理 B》2009,18(11):5055-5060
β-Mn2V2O7 crystals with strip shape are successfully prepared by the molten salt method in a closed crucible,and are characterized by x-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),selected area of electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM).The results indicate that the sample is of the β-Mn2V2O7 crystal with monoclinic symmetry,level natural cleavage facets and directional growth.Magnetic properties are measured by vibration sample magnetometry (VSM) at room temperature,and the magnetic hysteresis loop indicates that the β-Mn2V2O7 has anti-ferromagnetic properties with low coercive force and remnant magnetization.The magnetic measurement results in different directions exhibit that the β-Mn2V2O7 has magnetic anisotropy,which is due to the fact that the magnetic interaction energy of the β-Mn2V2O7 is lowest only when the electron configuration is in a certain direction.  相似文献   

9.
The iron di-silicide #-FeSi2 is a promising direct band gap semiconductor but difficult to produce. Here, the successful direct synthesis of this phase by ion beam mixing of Fe/Si bilayers at temperatures in the range of 450 to 550 °C is reported. The obtained single-phase #-FeSi2 layers and their structure are confirmed by Rutherford backscattering spectrometry, X-ray diffraction and conversion electron Mössbauer spectroscopy.  相似文献   

10.
The electronic structure and optical properties of N-doped β-Ga2O3 and N-Zn co-doped β-Ga2O3 are investigated by the first-principles calculation. In the N-Zn co-doped β-Ga2O3 system, the lattice parameters of a, b, c, V decrease and the formation energy of N-Zn co-doped β-Ga2O3 is smaller in comparison with N-doped β-Ga2O3. There are two shallower acceptor impurity levels in N-Zn co-doped β-Ga2O3. Comparing with N-doped β-Ga2O3, the major absorption peak is red-shifted and the impurity absorption edge is blue-shifted for N-Zn co-doped β-Ga2O3. The results show that the N-Zn co-doped β-Ga2O3 is found to be a better method to push p-type conductivity in β-Ga2O3.  相似文献   

11.
To explore the origin of low conversion efficiency for novel β-FeSi2/c-Si heterojunction solar cells, the effect of surface recombination and interface states on the cell performance has been investigated by numerical simulation. The present results show that surface recombination of β-FeSi2 film plays an important role in limiting the cell property since the photovoltaic behavior of β-FeSi2 is quite sensitive to surface recombination due to its especial characteristic of very high optical absorption coefficient. Surface quality of β-FeSi2 film should be much improved for better cell performance. In addition, it is shown that interface states between β-FeSi2 film and crystalline silicon are critical to device characterization. Interface states should be minimized to obtain higher conversion efficiency. If surface recombination and interface states can be best suppressed, potential conversion efficiency for the cell may be up to 28.12% at 300 K under illumination of AM 1.5, 100 mW/cm2.  相似文献   

12.
Al-doped β-FeSi2 thin film was sputtered on Si substrate and then applied to the amorphous-Si/β-FeSi2/crystalline-Si (a-Si/β-FeSi2/c-Si) double heterojunction. The X-ray diffraction result confirmed the formation of β-FeSi2 crystallization. The result of carrier lifetime measurement implied that Al-doping could improve the carrier lifetime and infrared response property of β-FeSi2 thin film. Such improvements were ascribed to the reduction of Si vacancy density by Al atom occupation. Based on the improved Al-doped β-FeSi2 thin film, the prepared a-Si/β-FeSi2/c-Si double heterojunction exhibited prominent enhancements in open-circuit voltage, short-circuit current density, fill factor, and energy conversion efficiency than that of the un-doped β-FeSi2 double heterojunction. These results reveal an attractive way to improve the photovoltaic property of a-Si/β-FeSi2/c-Si double heterojunction using Al-doped β-FeSi2 thin film.  相似文献   

13.
Single-phase β-FeSi2 films on silicon (1 0 0) were fabricated by pulse laser deposition. The structure and crystal quality of the samples were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The field scanning electron microscopy showed that the film thickness increases with the increasing of the laser fluence. Moreover, atomic force microscopy observations revealed the changes of surface properties with different laser fluence. Based upon all experimental results, it is found that 7 J/cm2 is the most favorable for the formation of β-FeSi2 thin films.  相似文献   

14.
Mixed phase TiO2 and Ce/TiO2 samples were synthesized by a sol–gel method using different hydrolysis conditions. In pure TiO2 samples, traditional X-ray diffraction (XRD) and Ti K-edge synchrotron X-ray absorption near edge structures (XANES) independently revealed their anatase/rutile phase ratios. XANES results further revealed a substantial amount of Ti atoms existed in other forms beside anatase and rutile TiO2 in the sample synthesized by the low hydrolysis condition. An increase in the extent of the hydrolysis during the synthesis leads to an increased rutile ratio and a reduction in other forms. In Ce/TiO2 samples, the crystal sizes were too small for XRD characterization. Only XANES could be used to characterize their phase ratios. It is found that adding Ce impedes rutile formation; leading to increased anatase ratio. The difference in the fundamental aspects of XRD and XANES techniques in providing the phase ratios is discussed.  相似文献   

15.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

16.
The core and valence levels of β-PbO2 have been studied using hard X-ray photoemission spectroscopy ( = 6000 eV and 7700 eV). The Pb 4f core levels display an asymmetric lineshape which may be fitted with components associated with screened and unscreened final states. It is found that intrinsic final state screening is suppressed in the near-surface region. A shift in the O 1s binding energy due to recoil effects is observed under excitation at 7700 eV. It is shown that conduction band states have substantial 6s character and are selectively enhanced in hard X-ray photoemission spectra. However, the maximum amplitude in the Pb 6s partial density of states is found at the bottom of the valence band and the associated photoemission peak shows the most pronounced enhancement in intensity at high photon energy.  相似文献   

17.
The composition and structure of homogeneous SiC1.4, SiC0.95, SiC0.7, SiC0.4, SiC0.12, and SiC0.03 layers obtained by multiple high-dose implantation of carbon ions with energies of 40, 20, 10, 5, and 3 keV into silicon are analyzed using Auger electron spectroscopy, X-ray diffraction, IR spectroscopy, and atomic force microscopy. The effect of decomposition of carbon and carbon-silicon clusters on the formation of Si-C tetrahedral bonds and on crystallization in silicon layers with high and low concentrations of carbon is considered.  相似文献   

18.
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.  相似文献   

19.
Highly-pure iron powder was covered on porous silicon for fabricating semiconducting β-FeSi2 structures. X-ray diffraction and Raman scattering results confirm the formation of pure-phase β-FeSi2 after high-temperature annealing at 1100°C and then long-time persistence at 900°C. Scanning electron microscope observations reveal that large-size (>μm) β-FeSi2 grains mainly form in the pores of porous silicon and some nanocrystals grow on local surfaces. The temperature-dependent photoluminescence spectra disclose that the observed ∼1.54 μm emission arises from free exciton recombination, which is confirmed via the activation energy (0.25 eV) measurement. Our method provides a way to synthesize single-phase β-FeSi2 materials.  相似文献   

20.
Sol–gel-derived SrTa2O6 thin films were fabricated at a low temperature of 500 °C. To improve their leakage current properties, additional UV/O3-assisted annealing was performed from room temperature to 290 °C. UV/O3 treatment at 290 °C gave a very low leakage current that was six orders of magnitude lower than that of an untreated thin film. During UV/O3-assisted annealing, Si and Ti ions diffused from the substrates into the SrTa2O6 thin films and occupied the Ta5+ sites, subsequently generating Si? and Ti?. At a heating temperature of 290 °C, large amounts of Ti ions diffused throughout the SrTa2O6 thin film. These Ti ions contributed to the generation of inactive combinations of $(\mathrm{Si}^{-}\mbox{--}\mathrm{V}_{\mathrm{o}}^{+})^{+}\mbox{--}\mathrm{Ti}^{-}$ and $(\mathrm{Ti}^{-}\mbox{--}\mathrm{V}_{\mathrm{o}}^{+})^{+}\mbox{--}\mathrm{Ti}^{-}$ , which greatly reduced oxygen vacancies (Vo). Thus, the leakage current was significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号