首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

2.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride glass when excited by a 975 nm diode laser was studied in this paper. One typical ultraviolet upconversion luminescence lines positioned at 362.3 nm was found. It can be attributed to the five-photon upconversion luminescence transition of 1D2 → 3H6. Several visible upconversion luminescence lines at 451.1 nm, (477.9 nm, 462.5 nm), 648.7 nm, (680.5 nm, 699.5 nm) and (777.5 nm, 800.7 nm) were found also, which results from the fluorescence transitions of five-photon 1D2 → 3F4, three-photon 1G4 → 3H6, three-photon 1G4 → 3F4, two-photon 3F3 → 3H6 and two-photon 3H4 → 3H6 of Tm3+ ion, respectively. The theoretical analysis suggests that the upconversion mechanism of the 362.3 nm 1D2 → 3H6 upconversion luminescence is the cross energy transfer of {3H4(Tm3+) → 3F4(Tm3+), 1G4(Tm3+) → 1D2(Tm3+)} and {1G4(Tm3+) → 3F4(Tm3+), 3H4(Tm3+) → 1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results from the sequential energy transfer {2F5/2(Yb3+) → 2F7/2(Yb3+), 3H4(Tm3+) → 1G4(Tm3+)} and {2F5/2(Yb3+) → 2F7/2(Yb3+), 3F4(Tm3+) → 3F2(Tm3+)} from Yb3+ ions to Tm3+ions, respectively.  相似文献   

3.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

4.
In this paper, we present the photoluminescence properties of Pr3+-, Sm3+- and Dy3+-doped germanate glasses and glass ceramics. From the X-ray diffraction measurement, the host glass structure was determined. These glasses have shown strong absorption bands in the near-infrared (NIR) region. Compared to Pr3+-, Sm3+- and Dy3+-doped glasses, their respective glass ceramics have shown stronger emissions due to the Ba2TiGe2O8 crystalline phase. For Pr3+-doped glass and glass ceramic, emission bands centered at 530 nm (3P03H5), 614 nm (3P03H6), 647 nm (3P03F2) and 686 nm (3P03F3) have been observed with 485 nm (3H43P0) excitation wavelength. Of them, 647 nm (3P03F2) has shown bright red emission. Emission bands of 4G5/26H5/2 (565 nm), 4G5/26H7/2 (602 nm) and 4G5/26H9/2 (648 nm) for the Sm3+:glass and glass ceramic, with excitation at 6H5/24F7/2 (405 nm) have been recorded. Of them, 4G5/26H7/2 (602 nm) has shown a bright orange emission. With regard to the Dy3+:glass and glass ceramic, a bright fluorescent yellow emission at 577 nm (4F9/26H13/2) has been observed, apart from 4F9/26H11/2 (667 nm) emission transition with an excitation at 454 nm (6H15/24I15/2) wavelength. The stimulated emission cross-sections of all the emission bands of Pr3+, Sm3+ and Dy3+:glasses and glass ceramics have been computed based on their measured full-width at half-maxima (FWHM, Δλ) and lifetimes (τm).  相似文献   

5.
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649 nm corresponding to the transitions 1G43H6 and 1G43H4 of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3%=3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+.  相似文献   

6.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

7.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

8.
Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1−x)TeO2+(x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements.Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level were observed. Integrated absorption cross-section of each band except that of 3H5 level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm (1G43H6 transition), 651 nm (1G43H4 transition) and 800 nm (1G43H5 transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions.The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.  相似文献   

9.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

10.
The Tm3+/Er3+:NaGd(MoO4)2 crystal with dimensions of Φ22×30 mm3 was grown by Czochralski method. Polarized spectra and fluorescence lifetime for the 4I13/2(Er3+)→4I15/2(Er3+) transition at room temperature were investigated. Based on the Judd-Ofelt theory, the spontaneous transition probabilities, the fluorescent branching ratios and the radiative lifetimes were calculated. The fluorescence lifetime was measured to be 1.81 ms. The detailed excited-transition mechanism with 800 nm radiation is also discussed.  相似文献   

11.
Upconversion emission and energy transfer processes in singly, doubly and triply doped tellurite glasses have been studied under 798 and 980 nm laser excitations. Emissions have been observed at 482, 544, 584, 655 nm and at 477, 655, 698, 800 nm corresponding to Tb3+: 5D4 → 7F6, 7F5, 7F4, 7FJ (J = 0, 1, 2, 3) and Tm3+: 1G4 → 3H6, 1G4 → 3F4, 3F3 → 3H6, 3H4 → 3H6 transitions, respectively. Among Tm3+, Yb3+and Tb3+ ions only Tm3+ has a ground state absorption at 798 nm excitation due to 3H4 ← 3H6 transition. For 980 nm excitation only Yb3+ can absorb the incident radiation. However, for both types of excitations, emission from all the three ions Tb, Yb and Tm has been observed. Possible mechanisms are proposed as follows: under 798 nm excitation Tm3+ ions are excited which excite Yb3+ ions through energy transfer. Finally “cooperative energy transfer” from a pair of Yb3+ ions to Tm3+ and Tb3+ ions takes place. Under 980 nm excitation Yb3+ ions absorb the incident energy and excite Tm3+ and Tb3+ ions via cooperative energy transfer. Variation of emission intensity with the ion concentrations of Yb3+, Tm3+ and Tb3+ has been studied. The lifetime of the 1G4 level has also been measured.  相似文献   

12.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

13.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

14.
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+-codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (∼750 cm−1) can be used as potential host material for upconversion lasers.  相似文献   

15.
The luminescence properties of Er3+ doped alkali tellurite [ TeO2-M2O (M=Li, Na and K)] glasses are investigated. Infrared to visible upconversion emissions are observed at 410, 525, 550 and 658 nm using 797 nm excitation. These bands are assigned to the 2H9/2  →4I15/2, 2H11/2  →4I15/2, 4S3/2  →4I15/2, 4F9/2  →4I15/2 transitions of Er3+ respectively. Detailed study reveals that the 2H9/2  →4I15/2 transition at 410 nm involves a three-step process while the other transitions involve two-steps. Excitation with 532 nm radiation gives additional bands at 380, 404, 475 and 843 nm wavelengths due to the 4G11/2  →4I15/2, 2P3/2  →4I13/2, 2P3/2  →4I11/2, and 4S3/2  →4I13/2 transitions, respectively, along with the bands observed on NIR excitation. The fluorescence yield is found to be largest for the TeO2-Na2O glass. The lifetime of the 4S3/2 level has been measured for all the three cases and used to explain the upconversion mechanisms. The fluorescence intensity ratio corresponding to the two thermally coupled levels (2H11/2, 4S3/2) has been used to estimate the temperature of the glass. It is observed that the temperature sensing capacity of TeO2-Li2O glass is better than the other two glasses.  相似文献   

16.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

17.
Photoluminescence properties of Bi3+ co-doped Eu3+ containing zinc borate glasses have been investigated and the results are reported here. Bright red emission due to a dominant electric dipole transition 5D07F2 of the Eu3+ ions has been observed from these glasses. The nature of Stark components from the measured fluorescence transitions of Eu3+ ions reveal that the rare earth ions could take the lattice sites of Cs or lower point symmetry in the zinc borate glass hosts. The significant enhancement of Eu3+ emission intensity by 346 nm excitation (1S03P1 of Bi3+ ions) elucidates the sensitization effect of co-dopant. The energy transfer mechanism between sensitizer (Bi3+) and activator (Eu3+) ions has been explained.  相似文献   

18.
Effects of WO3 and CdO on the spectroscopic properties of Nd3+ doped tellurite glasses were investigated. The optical band gaps and Urbach energies of the samples were determined using the dependence of the absorption coefficient on the photon energy. The Urbach energies were found to vary from 0.18 to 0.25 eV as the WO3 content in the binary glasses decreased from 20.0 to 10.0 mol% while the optical band gap of the same glasses did not show an appreciable dependence on the glass composition. Judd-Ofelt (Ωt) parameters were calculated from the optical absorption spectra measured at room temperature. In all the glasses the J-O parameters follow the same trend as Ω2>Ω6>Ω4. The J-O intensity parameters were used to compute the radiative properties such as the radiative transition probabilities (Aed), branching ratios (β) and radiative lifetimes (τr) for all the possible fluorescence bands. The fluorescence spectra obtained upon 805.2 nm excitation exhibited an intense emission band centered at 1064 nm (4F3/24I11/2) and two weak bands at 910 nm (4F3/24I9/2), and 1340 nm (4F3/24I13/2). The stimulated emission cross-section for the 1064 nm emission was determined using the emission spectra. The highest gain bandwidth (σe×ΔλP) was determined to be 155.4 for the 0.79TeO2-0.15WO3-0.05CdO ternary glass composition, which could be more useful as promising material for the design and development of fiber amplifiers and lasers.  相似文献   

19.
Er3+-doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed.  相似文献   

20.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号