首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium aluminate doped with Tb3+ (MgAl2O4:Tb3+) was prepared by combustion synthesis. Three thermoluminsence (TL) peaks at 120, 220 and 340 °C were observed. PL and TL emission spectrum shows that Tb3+ acts as the luminescent centre. Optically stimulated luminescence (OSL) was observed when stimulated by 470 nm blue light.Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the TL and OSL processes in MgAl2O4:Tb3+. Two defect centres were identified in irradiated MgAl2O4:Tb3+ phosphor by ESR measurements which was carried out at room temperature and these were assigned to V and F+ centres. V centre (hole centre) is correlated to 120 and 220 °C TL peaks and F+ centre (electron centre), which acts as a recombination centre is correlated to 120, 220 and 340 °C.  相似文献   

2.
The present paper describes the synthesis of europium-doped calcium aluminate phosphor using the combustion method. An efficient blue emission phosphor can be prepared at reaction temperatures as low as 500 °C in a few minutes by this method. Characterization of the powder was done by X-ray diffraction, transmission electron microscopy, scanning electron microscope analysis and the optical properties were studied by photoluminescence spectra. Thermoluminescence (TL) studies also have been carried out on CaAl12O19:Eu2+ phosphor. The TL glow curve shows peaks at 174 and 240 °C. Defect centres formed in irradiated phosphor have been studied using the technique of electron spin resonance. Step annealing measurements indicate that one of the annealing stages of a defect centre appear to correlate with the release of carriers resulting in TL peak at 174 °C. The centre is characterized by an isotropic g-value of 2.0046 and is assigned to a F+ centre.  相似文献   

3.
Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O ion and Al2+ centre. The O ion (hole centre) correlates with the main 190 °C TL peak. The Al2+ centre (electron centre), which acts as a recombination centre, also correlates to the 190 °C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O ion and is related to the high temperature TL at 317 °C. This centre also appears to be responsible for the observed OSL process in BeO phosphor.  相似文献   

4.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

5.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

6.
ZnAl2O4:Tb phosphor was prepared by combustion synthesis. ZnAl2O4:Tb exhibits three thermally stimulated luminescence (TSL) peaks around 150, 275 and 350 °C. ZnAl2O4:Tb exhibits optically stimulated luminescence (OSL) when stimulated with 470 nm light.Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in ZnAl2O4:Tb. Two defect centres are identified in irradiated ZnAl2O4:Tb phosphor and these centres are assigned to V and F+ centres. V centre appears to correlate with the 150 °C TSL peak, while F+ centre could not be associated with the observed TSL peaks.  相似文献   

7.
Tb3+ doped CaZrO3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO3:Tb3+ exhibits three thermoluminescence (TL) glow peaks at 126 °C, 200 °C and 480 °C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O? ion. Centre II with an axial symmetric g-tensor with principal values g=1.9986 and g?=2.0023 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TL peak in CaZrO3:Tb3+ phosphor.  相似文献   

8.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

9.
Lithium Calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (RE3+) elements has been synthesized by high temperature solid state diffusion reaction. The reaction has produced a very stable crystalline LiCaBO3:RE3+ phosphors. Among these RE3+ doped phosphors thulium doped material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of gamma irradiated LiCaBO3:Tm3+ samples had shown two major well-separated glow peaks at 230 and 430 °C. The glow peak at 430 °C is almost thrice the intensity of the glow peak at 230 °C. The TL sensitivity of the phosphor to gamma radiation was about eight times that of TLD-100 (LiF). Photoluminescence and TL emission spectra showed the characteristic Tm3+ peaks. TL response to gamma radiation dose was linear up to 103 Gy. Post-irradiation TL fading on storage in room temperature and elevated temperatures was studied in LiCaBO3:Tm3+ phosphor.  相似文献   

10.
A novel blue light-emitting phosphor, Eu2+-doped magnesium strontium aluminate (MgSrAl10O17:Eu2+), for plasma display panel (PDP) application was developed. X-ray diffraction (XRD) patterns disclosed that the phosphor annealed at 1500 °C for 5 h was a pure MgSrAl10O17 phase. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm. The phosphor shows strong and broad blue emission under vacuum ultraviolet (VUV) light excitation. After baking at 400-600 °C and irradiation with VUV light for 300 h, the phosphor still keep excellent VUV luminescence properties exhibiting good stability against high temperature baking and VUV irradiation. The decay time was short as 1.09 μs and the quantum yield was high to 0.77±0.02. All the characteristics indicated that MgSrAl10O17:Eu2+ would be a promising blue phosphor for PDP application.  相似文献   

11.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

12.
The present paper reports that TL glow curve and kinetic parameter of Eu3+ doped SrY2O4 phosphor irradiated by beta source. Sample was prepared by solid state preparation method. Sample was characterized by XRD analysis and particle size was calculated by Debye–Scherrer formula. The sample was irradiated with Sr-90 beta source giving a dose of 10 Gy and the heating rate used for TL measurements are 6.7 °C/s. The samples display good TL peaks at 106 °C, 225 °C and 382 °C. The corresponding kinetic parameters are calculated. The photoluminescence excitation spectrum at 247 and 364 nm monitored with 400 nm excitation and the corresponding emission peaks at 590, 612 and 624 nm are reported.  相似文献   

13.
Enstatite (MgSiO3) ceramic powders were synthesised by a low-temperature initiated self-propagating, gas-producing solution combustion process. The prepared powders were characterised by powder X-ray diffraction, scanning electron microscopy and Brunauer–Emmer–Teller specific surface area measurements. Defect centres induced by radiation were studied using the techniques of thermoluminescence (TL) and electron spin resonance (ESR). A well-resolved glow with peak at 178°C and a shouldered peak at 120°C were observed. Two defect centres were identified by ESR measurements, which were carried out at room temperature, and these were assigned to an O? ion and F+ centre. The O? ion (hole centre) appears to correlate with the main TL peak at 178°C.  相似文献   

14.
Samples of natural andalusite (Al2SiO5) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 °C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 °C. The EPR spectra of natural samples heat-treated at 600 °C for 30 min show signals at g=5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 °C for 30 min followed gamma irradiation. This line was attributed to Ti3+ centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe3+. Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 °C can be attributed to the same defect center.  相似文献   

15.
In this study, a solution combustion method was used to prepare green emitting Ce3+–Tb3+ co-activated ZnAl2O4 phosphor. The samples were annealed at 700 °C in air or hydrogen atmosphere to improve their crystallinity and optical properties. X-ray diffraction study confirmed that both as-prepared and post-preparation annealed samples crystallized in the well known cubic spinel structure of ZnAl2O4. An agglomeration of irregular platelet-like particles whose surfaces were encrusted with smaller spheroidal particles was confirmed by scanning electron microscopy (SEM). The fluorescence data collected from the annealed samples with different concentrations of Ce3+ and Tb3+ show the enhanced green emission at 543 nm associated with 5D47F5 transitions of Tb3+. The enhancement was attributed to energy transfer from Ce3+ to Tb3+. Possible mechanism of energy transfer via a down conversion process is discussed. Furthermore, cathodoluminescence (CL) intensity degradation of this phosphor was also investigated and the degradation data suggest that the material was chemically stable and the CL intensity was also stable after 10 h of irradiation by a beam of high energy electrons.  相似文献   

16.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

17.
Thermoluminescence (TL) and photoluminescence studies have been carried out on CaSO4:Tb, CaSO4:Ce and CaSO4:Tb,Ce phosphors with the aim of studying energy transfer process in the CaSO4:Tb,Ce phosphor. CaSO4:Tb,Ce shows TL peaks at 150, 220, 320 and 400°C. Changes in Tb and Ce concentrations influence the relative heights of these glow peaks. Co-doping with 0.1 mol% of Ce in CaSO4:Tb enhances the sensitivity of 320oC TL peak by a factor of 15. Fluorescence results show that there is energy transfer from Ce to Tb ion. The defect centres formed in CaSO4:Tb,Ce phosphor are studied using electron spin resonance technique. The 320oC glow peak correlates with a centre (SO3radical) with g-values: g||=2.0061 and g=2.0026.  相似文献   

18.
This paper reports on the luminescence and electron paramagnetic resonance (EPR) investigations on MgSrAl10O17:Mn2+ green-emitting phosphor. Single-phase MgSrAl10O17 was successfully synthesized by the one-step solution combustion route without the need for post-annealing at a higher temperature. Crystallization of the powder was confirmed by X-ray diffraction. The luminescence of Mn2+- activated MgSrAl10O17 shows a strong green-emission peak around 515 nm due to the 4T16A1 transition of Mn2+ ions under the excitation (453 nm). The EPR spectra of Mn2+ ions exhibit a sextet hyperfine structure centered at g ≈1.995. The Mn2+ ion occupies Mg sites which are in tetrahedral symmetry. The magnitude of the hyperfine splitting (A) indicates that Mn2+ is in a moderately ionic environment. The number of spins participating in resonance (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed.  相似文献   

19.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

20.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号