首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
N-In codoped ZnO nanobelts were successfully synthesized via high-temperature chemical vapor deposition for the first time, using the mixture of In/ZnO as a precursor. The EDX spectrum showed that In was introduced into ZnO nanobelts. In order to better understand the optical properties of N-In codoped ZnO nanobelts, the Raman and low-temperature PL spectra of the undoped, In-doped and N-In codoped ZnO nanostructures were measured. By contrasting, N is incorporated into the nanobelts. The temperature dependent photoluminescence (PL) spectra were investigated. Their PL spectra in the temperature from 9 K to room temperature were dominated by an AoX emission of excitons bound to 2No-InZn acceptor complexes. The dissociation energy of the acceptor complexes is estimated to be 89-112 meV.  相似文献   

2.
Sn-doped ZnO nanorods with various Sn-doping concentrations were prepared using a low temperature hydrothermal method in an aqueous solution containing zinc nitrate, ammonium hydroxide, and tin acetate. With the increase in the concentration of tin acetate, more Sn atoms replaced Zn atoms in the ZnO lattice, and the amount of Sn in ZnO nanorods increased up to 14 at%. The relative intensity ratio of UV and deep level emission of ZnO nanorods was increased with the increase of Sn-doping level, and four times increase in the intensity ratio of UV to deep level emission was obtained for 14 at% Sn-doped ZnO nanorods compared with undoped ones. A blueshift of UV emission was observed up to 11 at% of Sn concentration, but redshift occurred when the amount of Sn was greater than that.  相似文献   

3.
Undoped and simultaneously (Sn+F) doped ZnO thin films were fabricated using a simplified spray pyrolysis technique and the effects of Sn doping level on their electrical, structural, optical and surface morphological properties were studied. The XRD patterns confirmed the hexagonal wurtzite structure of ZnO. The minimum electrical resistivity of 0.45×10−2 Ω cm was obtained for ZnO films having Sn+F doping levels of 8+20 at%. All the films exhibited average optical transmittance of 85% in the visible region, suitable for transparent electrode applications. The overall quality of the fabricated films was confirmed from photoluminescence (PL) studies. The PL and surface morphological studies along with the elemental analysis showed the increase of Sn diffusion into the ZnO lattice which was consistent with the concentration of Sn in the starting solution. The results of the analysis of physical properties of simultaneously doped ZnO films proved that these films might be considered as promising candidates for solar cells and other opto-electronic applications.  相似文献   

4.
We have chemically polymerized pyrrole in the presence of Sn-doped TiO2 nanoparticles (NPs) and TiO2 (NPs) which act as a protective pigment. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show a core-shell structure of pigments in which TiO2 and Sn-doped TiO2 NPs have a nucleus effect and caused a homogenous PPy core-shell type morphology leading to coverage of the TiO2 and Sn-doped TiO2 NPs by PPy deposit. The XRD results indicate that the crystalline size of polypyrrole/TiO2 NCs and polypyrrole/Sn-doped TiO2 NCs were approximately 93.46 ± 0.06 and 23.36 ± 0.06 nm respectively. The electrochemical impedance spectroscopy (EIS) results show that the performance of polypyrrole/Sn-doped TiO2 NCs is better than polypyrrole/TiO2 NCs. The results indicate that increasing the area of synthesized polypyrrole in the presence of Sn-doped TiO2 NPs can increase its ability to interact with the ions liberated during the corrosion reaction of steel in the presence of NaCl. The UV-vis results show that the band gap of TiO2 NPs increases with doped of Sn in lattice of TiO2. The increase of the band gap of TiO2 with doping of Sn can decrease the charge transfer through the coating.  相似文献   

5.
Single-crystal Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by chemical vapor deposition. The nanostructures grew via a self-catalytic mechanism on the walls of an alumina boat. The structure and properties of the doped ZnO were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and photoluminescence (PL) methods. A 10-min synthesis yielded vertically grown nanowires of 50–400 nm in diameter and several micrometers long. The nanowires grew along the ±[0001] direction. The Eu3+ concentration in the nanowires was 0.8 at.%. The crystal structure and microstructure of were compared for Eu3+-doped and undoped ZnO. PL spectra showed a red shift in emission for Eu3+-doped (2.02 eV) compared to undoped ZnO nanowires (2.37 eV) due to Eu3+ intraionic transitions. Diffuse reflectance spectra revealed widening of the optical bandgap by 0.12 eV for Eu3+-doped compared to undoped ZnO to yield a value of 3.31 eV. Fourier-transform infrared spectra confirmed the presence of europium in the ZnO nanowires.  相似文献   

6.
Pb- or Sn-doped Bi88Sb12 alloys were prepared by direct melting, quenching, and annealing. The Bi-Sb alloy phase was predominant in all samples. Pb or Sn atoms were distributed almost uniformly in Bi88Sb12, while some segregation was confirmed at the grain boundaries when Pb or Sn was involved heavily. The thermoelectric properties of these doped materials were investigated by measuring the Hall coefficient, electrical resistivity, and Seebeck coefficient between 20 K and 300 K. The Hall and Seebeck coefficients of Pb- or Sn-doped samples were positive at low temperatures, indicating that the doping element acted as an acceptor. Temperatures resulting in positive Hall and Seebeck coefficients further increased with increasing doping amount and with respect to the annealing process. As a result, a large power factor of 1.2 W/mK2 could be obtained in the 3-at% Sn-doped sample at 220 K, with a large positive Seebeck coefficient.  相似文献   

7.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

8.
ZnO nanobelts had been synthesized by a simple method of thermal evaporation of Zn powders. The morphology, structure and photoluminescence (PL) properties of ZnO nanobelts were studied. The nanobelts had a single-crystal hexagonal structure and grew along the (0 0 0 1) direction with several micrometers long, 50-400 nm wide and 30-100 nm thick. Photoluminescence measurement showed that the nanobelts had an intensive near-band ultraviolet emission at about 3.3 eV. The obtained experimental data suggest that the ultraviolet PL in ZnO nanobelts originates from the recombination of the acceptor-bound excitons and free extions at room temperature. The absence of the deep level emission indicated very low impurity concentration and high crystalline quality in the ZnO nanobelts. Large-area growth and high quality indicate that the prepared ZnO nanobelts have potential application in optoelectronic devices.  相似文献   

9.
Al and Sb codoped ZnO nanorod ordered array thin films have been deposited on glass substrate with a ZnO seed layer by hydrothermal method at different growth time. The effect of growth time on structure, Raman shift, and photoluminescence (PL) was studied. The thin films at growth time of 5 h consist of nanorods growth vertically oriented with ZnO seed layer, and the nanorods with an average diameter of 27.8 nm and a length of 1.02 μm consist of single crystalline wurtzite ZnO crystal and grow along [0 0 1] direction. Raman scattering analysis demonstrates that the thin films at the growth time of 5 h have great Raman shift of 15 cm−1 to lower wavenumber and have low asymmetrical factor Гa/Гb of 1.17. Room temperature photoluminescence reveals that there is more donor-related PL in films with growth time of 5 h.  相似文献   

10.
In this study, the optical properties of S- and Sn-doped ZnO nanobelts, grown by thermal evaporation, were investigated. The sulfur and tin contents in the nanobelts were about 12% and 8% (atomic), respectively. The average widths of the S- and Sn-doped ZnO nanobelts were 73 and 121 nm, respectively. Room temperature photoluminescence (PL) spectroscopy exhibits significantly different optical properties for the two types of nanobelts. The PL result of the S-doped ZnO nanobelts shows the broad visible emission with no detectable ultraviolet (UV) peak, while the PL result of the Sn-doped sample shows two emission bands, one related to UV emission with a strong peak at 376 nm that is blue-shifted by 4 nm in comparison to pure ZnO nanobelts, and another related to green emission with a weak peak. A weak peak in the UV region at 383 nm appeared after annealing the S-doped ZnO nanobelts at 600 °C. Additionally, the annealed S-doped nanobelts show a stronger peak in the visible emission region in comparison to that observed prior to annealing. The Sn-doped ZnO nanobelts are also affected by annealing, as the UV emission peak is blue-shifted to 372 nm after annealing.  相似文献   

11.
Zn-Sn-O (ZTO) films with continuous compositional gradient of Sn 16-89 at.% were prepared by co-sputtering of two targets of ZnO and SnO2 in a combinatorial method. The resistivities of the ZTO films were severely dependent on oxygen content in sputtering gas and Zn/Sn ratio. Except for the films with Sn 16 at.%, all the as-prepared films were amorphous and maintaining the stable amorphous states up to the annealing temperature of 450 °C. Annealing at 650 °C resulted in crystallization for all the composition, in which ZnO, Zn2SnO4, ZnSnO3, and SnO2 peaks were appeared successively with increasing Sn content. Above Sn 54 at.%, the ZTO films were deduced to have a local structure mixed with ZnSnO3 and SnO2 phases which were more conductive and stable in thermal oxidation than ZnO and Zn2SnO4 phases. The lowest resistivity of 1.9 × 10−3 Ω cm was obtained for the films with Sn 89 at.% when annealed at 450 °C in a vacuum. The carrier concentrations of the amorphous ZTO films that contained Sn contents higher than 36 at.% and annealed at 450 °C in a vacuum were proportional to the Sn contents, while the Hall mobilities were insensitive to Sn contents and leveling in the range of 23-26 cm2/V s.  相似文献   

12.
The 57Fe Mössbauer effect measurements were made for the L10 ordered Fe-Pt alloys with 39-62 at% Pt and the effect of local atomic environment on the hyperfine structure was investigated. Furthermore, the thermal stability of magnetic order was investigated for the alloys with high Pt concentration. From the analyses of the observed Mössbauer spectra, we found that dipole-field-like anisotropic transferred hyperfine fields are mainly responsible for the large difference in hyperfine field between Fe-site and Pt-site in the Fe-rich alloys. In the Pt-rich region far from stoichiometry, the existence of many Fe-sites occupied by excess Pt atoms causes a distribution of exchange fields. Therefore, the iron atoms in different local environments may have their several hyperfine fields with different temperature dependence. The anomalous temperature dependence of the averaged hyperfine field and line broadening observed for the 61, 62 at% Pt alloys can be understood from the co-existence of various sub-spectra with different temperature dependence. As a result, the thermal stability of magnetic order is largely reduced as the Pt concentration exceeds 60 at%.  相似文献   

13.
Polycrystalline Zn1−xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-doped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size ∼60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetism with the saturation magnetic moment of 0.1 emu/g (0.29 μB/Ni2+).  相似文献   

14.
Novel porous ZnO nanobelts were successfully synthesized by heating layered basic zinc acetate (LBZA) nanobelts in the air. The precursor of LBZA nanobelts consisted of a lamellar structure with two interlayer distances of 1.325 and 0.99 nm were prepared using a low-temperature, solution-based method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy are used to characterize the as-products. PL measurements show that the porous ZnO nanobelts have strong ultraviolet emission properties at 380 nm, while no defect-related visible emission is detected. The good performance for photoluminescence emission makes the porous ZnO nanobelts promising candidates for photonic and electronic device applications.  相似文献   

15.
Sn-doped ZnO (SZO) microrods have been fabricated by a thermal evaporation method. Effect of Sn dopant on the microstructure, morphological and composition of as-prepared SZO microrods have been investigated by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The influence of the doping concentration on the morphological of the microrods has been investigated. Photoluminescence (PL) of these SZO microrods exhibits a weak ultraviolet (UV) emission peak at around 382 nm and the strong green emission peak at around 525 nm at room temperature. Field emission measurements demonstrate that the SZO possess good performance with a turn-on field of ∼1.94 V/μm and a threshold field of ∼3.23 V/μm, which have promising application as a competitive cathode material in FE microelectronic devices.  相似文献   

16.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

17.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

18.
Single-crystalline Na2Ti6O13 nanobelts were prepared on large-scale by molten salt synthesis at 825 °C for 3 h. The obtained nanobelts have typical width of less than 200 nm and thickness of 10-30 nm, and length up to 10 μm. The growth direction of the nanobelts was determined to be along [0 1 0]. Electrical transport property of an individual nanobelt was measured at room temperature and ambient atmosphere, and results showed that the nanobelts are semiconductor. Na2Ti6O13 nanobelts exhibited good photocatalytic efficiency for the degradation of RhB under UV irradiation.  相似文献   

19.
We used current-perpendicular-to-plane (CPP) exchange-biased spin valves to directly measure spin-diffusion lengths ?sfN for N=Cu(2.1 at% Ge) and Ag(3.6 at% Sn) alloys. We found ?sfCu(2% Ge)=117−6+10 nm and ?sfAg(4% Sn)=39±3 nm. The good agreement of this ?sfCu(2% Ge) with the value ?sfCu(2% Ge)=121±10 nm derived from an independent spin-orbit cross-sectional measurement for Ge in Cu quantitatively validates the use of Valet-Fert theory for CPP-MR data analysis to layer thicknesses several times larger than had been done before. From the value of ?sfAg(4% Sn), we predicted the ESR spin-orbit cross-section for Sn impurities in Ag.  相似文献   

20.
The electrical, optical and magnetic properties of Si-doped ZnO films   总被引:1,自引:0,他引:1  
In this paper, the influences of Si-doping on electrical, optical and magnetic properties of ZnO films have been systematically investigated. It is found that the resistivity of the films decreases from 3.0 × 103 to 6.2 × 10-2 Ωcm with Si-doping due to the increase of carrier concentration. The bandgap of ZnO films increases from 3.28 to 3.52 eV with increasing of Si concentration, which is found to be due to the collective effects of bandgap narrowing and Burstein-Moss effect induced by high carrier concentration. With increase of Si concentration, the near band edge (NBE) emission decreases due to the deterioration of crystal quality, while the yellow emission enhances due to the increase of extrinsic impurity or defects. The additional Si-doping has a profound influence on the enhancement of magnetic property and the maximum magnetic moment of 2.6 μB/Si is obtained. The ferromagnetic ordering is seen to be correlated with carrier concentration and structural defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号