首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the crystal growth, electron paramagnetic resonance (EPR) and optical absorption spectra of l-threonine doped with Cu2+. The quality, size and habit of the single crystals grown from aqueous solution by the slow solvent evaporation and by the cooling methods vary when the impurities are introduced during the growth process. The variations with the magnetic field orientation of the EPR spectra of single-crystal samples at room temperature and 9.77 GHz in three crystal planes (ab, bc and ac) show the presence of copper impurities in four symmetry-related sites of the unit cell. These spectra display well resolved hyperfine couplings of the of Cu2+ with the ICu= of the copper nuclei. Additional hyperfine splittings, well-resolved only for specific orientations of the magnetic field, indicate that the copper impurity ions in the interstitial sites have two N ligands with similar hyperfine couplings. The principal values of the g and ACu tensors calculated from the EPR data are g1=2.051(1), g2=2.062(2), g3=2.260(2), ACu,1=16.9(5)×10−4 cm−1, ACu,2=21.8(6)×10−4 cm−1, ACu,3=180.0(5)×10−4 cm−1. The principal directions corresponding to g3 and to ACu,3 are coincident within the experimental errors, reflecting the orientation of the bonding planes of the copper ions in the crystal. The values of the crystal field energies are evaluated from the optical absorption spectrum, and the crystal field and bonding parameters of the Cu impurities in the crystal are calculated and analyzed. The EPR and optical absorption results are discussed in terms of the crystal structure of l-threonine and the electronic structure of the Cu2+ ions, and compared with data reported for other systems. The effects of the impurities in the growth and habit of the crystals are also discussed.  相似文献   

2.
The optical absorption spectrum, zero-field splitting (ZFS) and EPR g factor of LiNbO3:Ni2+ are explained uniformly on the basis of complete energy matrix diagonalization procedure (CDP) and Zhao's self-consistent field (SCF) d-orbit of free Ni2+ ions. The agreement between the calculated results and the experimental data shows quantitatively that impurities Ni2+ replace the Nb5+ rather than Li+ sites in LiNbO3:Ni2+.  相似文献   

3.
In this paper, we give an alternative suggestion that both the observed optical and electron paramagnetic resonance (EPR) spectra of Yttrium oxide (Y2O3):V3+ are attributed to V3+ ions at the S6 site of Y2O3. This suggestion is different from the opinion in the previous paper that the optical and EPR spectra are attributed to V3+ ions at the C2 and S6 sites, respectively. From the suggestion, the optical band positions and spin-Hamiltonian parameters are calculated by diagonalizing the complete energy matrix for 3d2 ions in trigonal symmetry. The results are in good agreement with the experimental values, suggesting that both the observed optical and EPR spectra in Y2O3:V3+ may be due to V3+ at S6 site of Y2O3 crystal.  相似文献   

4.
The optical absorption and EPR spectra of Mn2+ ion doped in cadmium maleate dihydrate have been theoretically investigated by diagonalizing the complete energy matrices for a d5 configuration ion in a trigonal ligand-field. According to the suggestion of the optical absorption studies, we assume that the Mn2+ ion enters the host lattice interstitially and the distorted octahedral symmetry for the impurity ion is trigonal. Moreover, the local lattice structure parameters of the system are determined. The results show that the six oxygen ions around the Mn2+ ion are at the same distance R=2.115 ?, and there are three Mn-O bonds forming an angle θ1 of 66.26° with the C3-axis and three others forming an angle θ2 of 43.40°.  相似文献   

5.
Electron paramagnetic resonance (EPR) studies of V O2+ ions in L-asparagine monohydrate single crystals are reported at room temperature. It is found that the V O2+ ion takes up an interstitial site. The angular variations of the EPR spectra in three mutually perpendicular planes are used to determine the principal g and A values and their direction cosines. The values of g and A parameters are: gx=1.9011, gy=2.1008, gz=1.9891 and Ax=100, Ay=78, Az=126 (×10−4) cm−1. The optical absorption spectrum of V O2+ ions in L-asparagine monohydrate is also studied at room temperature. The band positions are calculated using the energy expressions and compared with the observed band positions to confirm the transitions. The best-fit values of the crystal field (Dq) and tetragonal (Ds and Dt) parameters are evaluated from the observed band positions.  相似文献   

6.
In this paper, the transformation processes of two types of bis(8-hydroxyquinoline)zinc: Znq2 dihydrate and anhydrous (Znq2)4 were investigated by X-ray diffraction (XRD), infrared spectra (IR), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The effects of crystal structure on optical properties of bis(8-hydroxyquinoiline)zinc were analyzed. Znq2 dihydrate can be transformed into anhydrous (Znq2)4 during heating under vacuum. Reversal transformation occurs by the interaction between chloroform and (Znq2)4. But (Znq2)4 was partially transformed into Znq2 dihydrate by the interaction between ethanol and (Znq2)4. The different molecular structure results in different crystal stacking and electronic structure, thereby affect its optical properties.  相似文献   

7.
By diagonalizing a set of complete energy matrices constructed for a d5 configuration ion in a trigonal ligand field, a reasonable interpretation is obtained for the EPR zero-field splitting of Mn2+ ions located at octahedral sites in yttrium aluminum garnet. It is shown that the local lattice structure around an octahedrally coordinated Mn2+ center has an expansion distortion, which may be attributed to the fact that the radius of Mn2+ ion is larger than that of Al3+ ion, and the Mn2+ ion will push the oxygen ligands outwards. Simultaneously, the local lattice structure distortion parameters ΔR=0.1825-0.2158 A and Δθ=1.220°-1.315° for the octahedral Mn2+ center in the crystal are determined, respectively. Meanwhile, we also demonstrated that the empirical impurity-ligand distance is not suitable for the YAG:Mn2+ system which has been approximately taken in previous works.  相似文献   

8.
In this paper, the formulae of optical spectral levels and electron paramagnetic resonance (EPR) spectra in trigonal symmetry of 3d8 ions are established on the basis of strong field mechanism and a two spin-coupling (SO) parameters model. Unlike the classical crystal-field approach which has only taken the SO coupling of the central metal ions into account, the contribution of the SO coupling of the ligand ions to the optical and EPR spectra has been included in these formulae. When the optical and EPR spectra of the strong covalent crystals are calculated, the reasonable results can be obtained if the two SO parameters model has been put into action. As an application, the optical and EPR spectra of the (NiX6)4− clusters in CsMgX3:Ni2+ (X=Cl, Br, I) crystals have been studied by the complete diagonalization (of energy matrix) method (CDM). The calculated results agree well with experimental findings. From the investigations, a more valid method to calculate the optical and EPR spectra for 3d8 ions clusters is provided.  相似文献   

9.
The anomalous fading (AF) of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals in Durango apatite is attributed to tunnelling effects. Electrons from the TL and OSL traps in this material are transferred, via a tunnelling effect, to the recombination sites. The availability of recombination sites for tunnelled electrons is of major importance for the degree of AF rate observed in this material. It is expected that a variation of the number of the electron recombination sites will be reflected in the experimentally measured AF rate. In the present work an investigation of the recombination sites for the tunnelled electrons is attempted by studying the AF effect using a special technique, in which the anomalously faded TL (OSL) is replaced by an equal amount of TL (OSL) induced by a beta dose.  相似文献   

10.
On the basis of the 120×120 complete energy matrices for a d3 configuration ion in a trigonal ligand field, for Cr3+ ions doped in MgTiO3 and LiTaO3, the local structures and EPR g factors of the octahedral (CrO6)9− clusters have been studied, respectively. By simulating the calculated optical spectra and the EPR spectra data to the experimental results, local structure parameters are obtained. The calculated results show that although the local lattice structures around the M (M=Mg2+, Ta5+) ions are obviously different, after Cr3+ replacing the M, the local lattice structures around the Cr3+ ions are quite similar and close to those of the Cr2O3. This may be ascribed to the fact that the octahedral Cr3+ center in MgTiO3:Cr3+ and LiTaO3:Cr3+ systems and that in Cr2O3 exhibit similar octahedral (CrO6)9− clusters. Moreover, the corresponding theoretical values of the optical spectra have been reported. It is also found that the orbital reduction factor k is very important to understand the EPR g factors for Cr3+ ions doped in MgTiO3 and LiTaO3.  相似文献   

11.
Analysis of the energy-level scheme and absorption spectrum of the Ni2+ ion in MgAl2O4 was performed. The recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multi-electron (DV-ME) method [K. Ogasawara, et al., Phys. Rev. B 64 (2001) 115413) was used in the calculations. The method is based on the numerical solution of the Dirac equation; no phenomenological parameters are used in the calculations. As a result, complete energy-level scheme of Ni2+ and its absorption spectra were calculated, assigned and compared with experimental data on the ground and excited state absorption spectra. Numerical contributions of all possible electron configurations into the calculated energy states were determined. By performing analysis of the molecular orbitals population, numerical contributions of the oxygen 2p- and 2s-orbitals into the 3d molecular orbitals were determined.  相似文献   

12.
Many body effects contribute significantly to the energy states of electron-hole pairs confined in quantum wells in the presence of excess electrons. We present results of optically detected resonance spectroscopy of the internal transitions of photo-excited electron-hole pairs in the presence of excess electrons for GaAs QWs and CdTe QWs. Compared to the case of isolated negatively charged excitons, excess electrons produce a large blue shift of the internal transitions in modulation-doped GaAs quantum wells (QWs) for filling factor <2, and similar effects are found in CdTe QWs. For filling factor >2 no internal transitions are observed. These measurements demonstrate the strong effects of electron-electron correlations on the internal transitions of charged excitons in these quasi-2D systems and the importance of magnetic translation invariance. In the presence of excess electrons, the observed internal transitions are those of a magnetoplasmon bound to a mobile valence band hole.  相似文献   

13.
Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.  相似文献   

14.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

15.
TlGaS2 single crystal doped by paramagnetic Fe3+ ions has been studied by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra reveal a nearly orthorhombic symmetry of the crystal field (CF) on the Fe3+ ions. Two groups each consisting of four equivalent Fe3+ centers were observed in the EPR spectra. The local symmetry of the crystal field on the Fe3+ centers and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of the GaS4 tetrahedrons. The rhombic distortion of the sulfur ligand CF is attributed to the effect of Tl ions located in the trigonal cavities between the tetrahedral complexes. The observed twinning of the resonance lines indicates a presence of two non-equivalent positions of Tl ions that confirms their zigzag alignment in the TlGaS2 crystal structure.  相似文献   

16.
We illustrate the potential of the density matrix theory for investigation of optical properties of arbitrary single‐walled carbon nanotubes (CNTs). We have performed microscopic calculations of excitonic absorption spectra for CNTs of different chiral angles and diameters. The obtained results are in good agreement with experiments, in particular the excitonic binding energies match well both experiments and ab initio calculations. Furthermore, we show the strength of our approach by presenting calculations of the ultrafast Coulomb driven non‐equilibrium dynamics in CNTs. We find excitation induced dephasing on the picosecond time scale depending on the excitation strength. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this work, the photoelectric properties of gallium selenide (GaSe) monocrystals in the edge absorption region, with various configurations of current contacts, at low and high optical excitation levels are investigated. The photoconductivity spectrum behavior is determined by localized electronic and excitonic states along c-axis. It is shown that the localization of electronic and excitonic states in one-dimensional fluctuation potential along c-axis results to an anisotropy in photoconductivity spectrum at various current contacts configurations. At Ec the photoconductivity is observed in the  < Eg and  > Eg regions. In the case of hv < Eg, the maximum photoconductivity, in the impurity and exciton absorption region are observed at 1.975 eV and 2.102 eV, respectively. With rising of excitation energy level, suppression of photoconductivity in the exciton absorption region and increases in impurity absorption region is observed. At E||c contact configuration, the considerable photoconductivity is observed only in the impurity absorption region, which also increases with rising of excitation level. It is supposed that, suppression of photoconductivity in the exciton absorption region at high excitation levels is connected with exciton-exciton interaction, which results to a nonlinear light absorption. The results are compared with the absorption and photoluminescence measurements.  相似文献   

18.
19.
For the first time we have found a new giant thermodynamical optical effect near the ferroelastic phase transition point in Cs3Bi2I9 layered crystal. The effect is appeared as periodical oscillations in time of the reflection coefficient. This phenomenon is caused by the small temperature deviations in thermodynamical system the appearance of which in the reflection spectra is strongly amplified in the ferroelastic phase transition point. The optical oscillations are explained on the base of a model that takes into account the temperature dependence of the refractive index through the order parameter (spontaneous strain) of the crystal.  相似文献   

20.
When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time tm and intensity Im corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity IT, and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after tm, is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of tm decreases with the increasing impact velocity, Im increases with the increasing impact velocity, and IT initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of tm, Im and IT increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号