首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Hangyao Wang 《Surface science》2009,603(16):L91-3016
Metal oxides are of interest as environmental oxidation catalysts, but practical applications are often limited by poorly understood surface poisoning processes. RuO2 is active for CO oxidation under UHV conditions but is deactivated by some surface poisoning processes at ambient pressures. In this work, we report kinetic models of surface poisoning during CO oxidation over RuO2(1 1 0), based on data obtained from plane-wave, supercell DFT calculations. While a surface carbonate is stable at low O2 pressures and high CO2 exposures, it is not stable under catalytic conditions. A surface bicarbonate is more stable and deactivates the RuO2 surface over a wide range of CO and oxygen pressures in the presence of trace amounts of water.  相似文献   

3.
The CaWO4:Ln3+@SiO2 (Ln=Tb, Dy and Ho) nanoparticles were synthesized via a combustion process at 800 °C, using citric acid as chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports. The persistent phosphor nanoparticles were characterized by X-ray diffraction (XRD), reflectance UV-vis and fluorescence spectroscopy (PL) and transmission electron microscopy (TEM) techniques. XRD patterns indicated that crystalline calcium tungstate with scheelite structure was produced. The reflectance UV-vis spectra showed the broad absorption band of groups and the PL spectra showed the wide excitation band, broad emission band of and characteristic emissions of Ln3+ ions. The average particle sizes were determined by TEM, which are about 50 nm.  相似文献   

4.
The MW plasma torch (2.45 GHz) in the mixture of CH4/H2/Ar (42/430/1540 sccm) with added Fe(CO)5vapors was used for the synthesis of iron oxide nanoparticles and carbon nanotubes. The particles with well-defined facets consisting of Fe3O4 and -Fe2O3 and self-assembled into long chains were produced at the power of 360 W. At higher power of 440-460 W the deposit contained significant amount of multi-walled carbon nanotubes covered by iron oxide nanoparticles. The diameter of CNTs was 8-20 nm. The particles had Fe3O4 and/or -Fe2O3 cores of spherical shape covered by a thin layer of carbon.  相似文献   

5.
Oxidation kinetics of high purity nickel, as well as the nonstoichiometry and chemical diffusion in nickel oxide have been studied as a function of temperature (1373-1673 K) and oxygen pressure (10-105 Pa) using microthermogravimetric techniques. In order to eliminate the possible participation of grain boundary diffusion in scale growth at lower temperatures, the oxidation rate measurements have always been started at the highest temperature (1673 K), when coarse-grained scale was formed, and the temperature and pressure dependence of the oxidation rate was determined by step-wise lowering the temperature of such pre-oxidized sample. Nonstoichiometry and the chemical diffusion coefficient in Ni1−yO have also been determined on such coarse-grained oxide samples, obtained by complete oxidation of nickel at highest temperature (1673 K). It has been found, that under such conditions oxidation of nickel follows strictly the parabolic rate law, and the parabolic rate constant of this reaction is the following function of temperature and oxygen pressure: The results of nonstoichiometry measurements, in turn, may be described by the following relationship Finally, chemical diffusion coefficient in Ni1−yO has been found to be independent on oxygen activity, indicating that the mobility of point defects in this oxide does not depend on their concentration, being the following function of temperature: It has been shown, that the parabolic rate constants of nickel oxidation, calculated from nonstoichiometry and chemical diffusion data are in excellent agreement with experimentally determined kp values. All these results clearly indicate that the predominant defects in nonstoichiometric nickel oxide (Ni1−yO) are double ionized cation vacancies and electron holes and the oxide scale on nickel growths by the outward volume diffusion of cations.  相似文献   

6.
Thin films of SiOx having thickness of 0.2 μm and oxygen content x=1.5 or 1.7 are prepared by thermal evaporation of SiO in vacuum. Then some samples are furnace annealed for various times (in the range ) at 770 and 970 K and some others are rapid thermal annealed at 970 K for 30 and 60 s. Photoluminescence (PL) measurements are carried out at room temperature using the 442 nm line of a He-Cd laser and the 488 nm of an Ar laser for excitation. The effect of the annealing conditions and wavelength of the exciting light on the shape of the PL from these films is explored. The deconvolution of the PL spectra measured with the 442 nm line from samples annealed at 770 K for reveals two distinct PL bands peaked at around 2.3 and 2.5 eV, which do not shift appreciably with increasing annealing time. In addition, at longer annealing times, a weak third band is resolved centred in the range 2.0-2.1 eV. It exists in the spectra of all samples annealed at 970 K being more prominent in the samples with x=1.5. The intensity of this band shows different dependences on the annealing time in the films with different initial composition. The results obtained are discussed in terms of radiative recombination via defect states in the SiOx matrix (the 2.5 eV band) or at the a-Si-SiOx interface (the 2.3 eV band). The band centred in the 2.0-2.1 eV range is related to recombination in amorphous silicon nanoparticles grown upon annealing.  相似文献   

7.
SnO2/In2O3 one-dimensional nano-core-shell structures have been synthesized at 1350 °C by thermal evaporation of the mixture of metal Sn, Fe(NO3)3 powders and In particles. The as-synthesized products have been characterized by energy-dispersive X-ray spectroscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Microstructure characterization indicates the orientation relationship between core and shell is , . The formation mechanism of this nano-core-shell structure can be attributed to the cover of In2O3 on the surface of SnO2 nanochains. The photoluminescence properties of the nano-core-shell structures have been measured. The PL spectrum shows some difference with the result from pure SnO2 and In2O3 nanostructure that be deemed to relate to interface defects in SnO2/In2O3 nano-core-shell structure.  相似文献   

8.
Using the interaction parameters up to the third neighbors and activated form of O and CO diffusion and their reaction, the model has been proposed for Monte-Carlo simulations describing the catalytic O + CO → CO2 reaction and occurring phase transitions on Pd(1 1 1) surface. Upon adsorption of CO the pre-adsorbed oxygen transforms from p(2 × 2)O phase into and phases in the limit of room and moderate temperatures, respectively. We demonstrate that the kinetic effects determine both the occurrence of the p(2 × 1)O and disappearance of the phases at moderate and low temperatures, respectively. Using reaction rate as a fit parameter, we show that at room temperature the start of the reaction can be synchronized with the occurrence of phase.  相似文献   

9.
Low-temperature photoluminescent spectra of ZnGa2O4:Cr3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr3+ ions in different sites including ideal octahedral, Zn-interstitial, sites and Ga2O3 impurity. The vibronic sidebands for both Stokes’ and anti-Stokes’ sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al3+ is substituted in Ga3+ sites to form (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al3+ and Ga3+.  相似文献   

10.
Systematic studies of structural, magnetic, electronic, and elastic properties have been performed for the electron-doped manganite Sr0.95Ce0.05MnO3. The results show that light doping with Ce in place of Sr in SrMnO3 could stabilize the perovskite-type structure. The electronic transport and magnetism measurements show that the sample exhibits a charge ordering (CO) state below , accompanied by softening of Young’s modulus due to a strong electron-phonon coupling. Cluster-glass behavior and the magnetoresistance (MR) effect are observed at low temperatures, resulting from the induced double-exchange (DE) ferromagnetic (FM) clusters embedded in the CO antiferromagnetic (AFM) matrix. Above , the high temperature range appears to be dominated by local FM fluctuations, which is further supported by internal friction measurements. Our results indicate the existence of intrinsic magnetic inhomogeneity in electron-doped Sr0.95Ce0.05MnO3.  相似文献   

11.
12.
The effects of thermal oxidation on the photoluminescence (PL) properties of powdered porous silicon (PSi) are studied using X-ray photoelectron spectroscopy (XPS). It is found that the PL intensity is steeply quenched after annealing at and recovered at above . The XPS intensity of oxides formed on the PSi surface is also found to strongly depend on the annealing temperature. The comparison between the annealing temperature dependence of PL intensity and that of the oxide XPS intensity suggests that the formation of thin disordered SiO2 layer accompanies the quenching of the PL intensity, and that the formation of thick high-quality SiO2 layer results in the PL intensity recovery. These results indicate that the thickness and quality of SiO2 layer play a crucial role in the PL properties of thermally oxidized PSi.  相似文献   

13.
14.
15.
Electronic states of gold nanoparticles in mordenite and their transformations under redox treatments have been studied by the methods of FTIR spectroscopy of adsorbed CO and diffuse reflectance UV-visible spectroscopy. Different states of ionic and metallic gold were detected in the zeolite channels and on the external surface of the zeolite - Au+ and Au3+ ions, charged clusters , and neutral nanoparticles Aum. Catalytic tests of the samples revealed the existence of two types of active sites of gold in CO oxidation - gold clusters <2 nm (low-temperature activity) and gold nanoparticles (high temperature activity).  相似文献   

16.
Nanoparticles of superconducting (YBCO) () exhibit ferromagnetism at room temperature while the bulk YBCO, obtained by heating the nanoparticles at high temperature (940 °C), shows a linear magnetization curve. Across the superconducting transition temperature, the magnetization curve changes from that of a soft ferromagnet to a superconductor. Furthermore, our experiments reveal that not only nanoparticles of metal oxides but also metal nitrides such as NbN () and δ-MoN () exhibit room-temperature ferromagnetism.  相似文献   

17.
First-principles plane-wave ultrasoft pseudopotential method within local density approach (LDA) has been used to study three possible vacancy-defect models for non-stoichiometric lithium niobate (LiNbO3): (1) the oxygen-vacancy model , (2) the niobium-vacancy model , and (3) the lithium-vacancy model . The corresponding formation energies are obtained via energy minimization of a supercell. In Nb-rich environment, the calculated defect formation energies, both under oxidation and reduction conditions, show little effect on the intrinsic defect structures. We find that the lithium vacancy model has the most stable configuration in the non-stoichiometric lithium niobate crystals. Our calculations also show that the formation of any type of neutral defects and Frenkel pairs in a Nb-rich environment is difficult.  相似文献   

18.
Both magnetic ordering temperatures and lattice constants were observed to be a function of preparation temperature for single-phase CaCuMn6O12 CMR ceramics of the same cation, oxygen composition and crystal structure. It was found for the first time that higher preparation temperatures result in a linear increase of a cubic cell parameter a, , and in a sharp decrease of magnetic ordering temperatures , by about , for quenched samples. High resolution NPD experiments have shown the presence of antisite defects resulting in partial occupation of octahedral (8c) sites by Cu2+ at higher preparation temperatures as never assumed for an ideal structure. The data obtained give a new insight to the problem of functional properties reproducibility suggesting stronger requirements for the production control of CMR materials.  相似文献   

19.
High quality epitaxial ZnO films were grown on c-Al2O3 substrates with Cr2O3 buffer layer by plasma-assisted molecular beam epitaxy (P-MBE). The hexagonal crystalline Cr2O3 layer was formed by oxidation of the Cr-metal layer deposited on the c-Al2O3 substrate using oxygen plasma. The epitaxial relationship was determined to be ZnO//Cr2O3//Cr//Al2O3 and ZnO//Cr2O3//[0 0 1]Cr//Al2O3. The Cr2O3 buffer layer was very effective in improving the surface morphology and crystal quality of the ZnO films. The photoluminescence spectrum showed the strong near band-edge emissions with the weak deep-level emission, which implies high optical quality of the ZnO films grown on the Cr2O3 buffer.  相似文献   

20.
We have studied the origin of photoluminescence (PL) from hydrogenated nanocrystalline silicon (nc-Si:H) films produced by a plasma-enhanced chemical vapor deposition technique using SiF4/SiH4/H2 gas mixtures. The nc-Si:H films were characterized using X-ray diffraction, infrared, Raman spectroscopy, optical absorption and stress, and were examined for PL by varying the deposition temperature (Td) under two different hydrogen flow rate ([H2]) conditions. The PL exhibited two peaks at around 1.7-1.75 and 2.2-2.3 eV. The peak energy, EPL, of the 1.7-1.75-eV PL band was found to shift as Td or [H2] changes. It was found that the decrease in Td acts to decrease the average grain size, 〈δ〉, and to increase both the optical band gap, , and the EPL values. By contrast, the increase in [H2] decreased the 〈δ〉 value, while increased the values of and EPL. Thus, as either Td decreases or [H2] increases, it is found that a decrease in 〈δ〉 corresponds well with increases in and EPL. As a consequence, it was suggested that an increase in EPL of the 1.7-1.75-eV PL band can be connected with an increase in , through a decrease in 〈δ〉. However, the PL process cannot be connected with the transition between both the bands, related to formation of nanocrystals. Based on these results, it was proposed that the use of both low Td and high [H2] conditions would allow to grow nc-Si:H films with small grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号