首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The thermal characterization and spectroscopic properties of Er3+-doped 0.6GeO2-(0.4-x)PbO-xPbF2 glasses were investigated experimentally. With the replacement of PbO by PbF2 the thermal stability of glasses is improved and the infrared fluorescence intensity at 1530 nm is increased. The Judd-Ofelt intensity parameters, radiative transition rates, and fluorescence lifetimes of the excited 4I13/2 level of Er3+ ions were calculated from Judd-Ofelt theory. The asymmetric ligand field around Er3+ ions resulted from the incorporation of PbF2 into germanate glasses, broadens the infrared emission spectra at 1530 nm. Upconversion luminescence in the investigated glasses was observed at room temperature under the excitation of 976 nm laser diode. The glass 0.6GeO2-0.3PbO-0.1PbF2 exhibits the maximum upconversion emission intensity, while no frequency upconversion luminescence was observed in the 0.6GeO2-0.4PbO glass. The quadratic dependence of the green and red emissions on excitation power indicates that two-photon absorption contributes to the visible emission under the 976-nm excitation.  相似文献   

2.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

3.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

4.
In this article, the 1.5 μm emission spectra corresponding to the 4I13/24I15/2 transition of Er3+ in tellurite glass are studied within the temperature from 8 to 300 K. The emission spectra of Er3+: 4I13/24I15/2 transition are also analyzed using a peak-fit routine, and an equivalent four-level system is proposed to estimate the stark splitting for the 4I15/2 and 4I13/2 levels of Er3+ in the tellurite glass. The results indicate that the 4I13/24I15/2 emission of Er3+ can exhibit a considerable broadening due to a significant enhance the peak a′, and b′ change, respectively, and the peaks of which are located at about 1507 and 1556 nm. A detailed study of temperature-dependent 1.5 μm emission spectra involving the change of the corresponding sub-bands shows that as the temperature decreases from 300 to 8 K, its line-shape becomes sharper and more intense (the full-width at half-maximum decreases from 59 to 38 nm). Temperature-dependent fluorescence intensities and the experimentally determined lifetimes are investigated; the results show that a decrease behavior of fluorescence intensities and lifetimes are observed for temperature from 8 to 300 K.  相似文献   

5.
The local chemical environment of the trivalent lanthanide cations in Nb2O5 nanopowders doped with 1 mol% of Eu3+ and Er3+, prepared via a Pechini approach, has been studied by means of EXAFS at the Ln-K edge. It can be demonstrated that the lanthanide ions enter the Nb2O5 structure as substitutional defects with respect to Nb, giving rise to a very large amount of disorder: both Eu3+ and Er3+ ions substitute Nb in the nine-fold coordinated site, with clustering of oxygen vacancies around the substitutional defects. Valence bond calculations have been used to validate the Ln-O distances obtained by the EXAFS fitting. The Er3+-doped nanocrystalline Nb2O5 sample shows efficient luminescence in the near infrared region around 1.5 μm. The emission and excitation spectra are affected by significant inhomogeneous broadening, in agreement with the presence of strong disorder around the dopant ions in nanosized Nb2O5.  相似文献   

6.
The use of optically robust, luminescent lanthanide-based particles is becoming an area of interest for biolabel-related chemistry, due to their long lifetimes and range of non-overlapping absorption and emission lines from the visible to the near-infrared. We report the synthesis and optical properties of water-soluble, luminescent Ln3+-doped nanoparticles (NPs) coordinated with a hydrophilic (RO)PO32− ligand that facilitates the stabilization of the NPs in aqueous conditions, and that regulates particle growth to the nanometer range. The use of lanthanide ions as dopants, in particular Eu3+ and Er3+ ions, yields optically robust particles with narrow emission lines in the visible (591 nm) and in the near-infrared (1530 nm), respectively. Luminescent lifetimes range from the microsecond to the millisecond for Er3+ and Eu3+ ions, respectively, and the NPs are not expected to be susceptible to photo-bleaching due to the fact that the emissions arise from intra-4f transitions of the lanthanide ions.  相似文献   

7.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

8.
Energy transfer has been studied from Er3+ to Eu3+ ions on excitation with NIR photons (796 and 980 nm) with and without Yb3+ ions. It is found that in one case the presence of Yb3+ enhances the fluorescence yield (980 nm excitation) whereas in the other case it quenches (796 nm excitation). Energy transfer from Er3+ ion's levels 4S3/2 and 2H11/2 is verified by decay curve analysis in both the cases. The nature of interaction between the donor (Er) and the acceptor (Eu) ions is found to be dipole-dipole. The energy transfer parameters viz. transfer probability, critical distance etc. have been calculated.  相似文献   

9.
Photoluminescent phosphors CaGa2S4: Eu2+, RE3+ (RE3+ including all rare earth ions except for Sc3+, Pm3+, Eu3+ and Lu3+) were prepared by sintering at high temperature in a reductive atmosphere, and their luminescent properties were studied intensively. The influences of co-doping rare earth ions on their luminescent properties were also investigated. No remarkable differences were found from excitation spectra of co-doped phosphors CaGa2S4: Eu2+, RE3+ in contrast with that of phosphor CaGa2S4: Eu2+, but there were a few differences in emission spectra of Ce3+, Pr3+ or Ho3+ co-doped phosphors. Phosphors CaGa2S4: Eu2+, RE3+ (RE=Ce, Pr, Gd, Tb, Ho and Y) had persistent afterglow, and very short afterglow was shown for Nd3+ or Er3+ co-doped phosphors, but no long afterglow appeared when auxiliary activator was La3+, Sm3+, Dy3+, Tm3+ or Yb3+. Among the phosphors with long-lasting phosphorescence, in our experiments, CaGa2S4: Eu2+, Ho3+ had the longest and the highest brightness long yellow afterglow. Thermo-luminescence of all co-doped phosphors was measured to find the answer of different influences from different rare earth auxiliary activators.  相似文献   

10.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

11.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

12.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

13.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

14.
Luminescence properties of Eu3+ doped TeO2-PbO-GeO2 glasses containing gold nanoparticles (NPs) were investigated. The emission spectra of the samples exhibited enhancement of Eu3+ luminescence due to the presence of gold NPs. The emission at 614 nm, due to the Eu3+ hypersensitive transition 5D0-7F2, is much influenced by the gold NPs and increases by ≈100% for samples heat-treated at 350 °C during 41 h.  相似文献   

15.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

16.
X3MgSi2O8: Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors with the mean particle size of 200 nm and the spherical shape are synthesized through combustion method. They show three emission colors under near-ultraviolet light: the blue and green colors from Eu2+ ions and the red color from Mn2+ ions. Three emission bands show the different emission colors with changing X2+ cations. These color shifts are discussed in terms of two competing factors of the crystal field strength and the covalency. These phosphors with maximum excitation of around 375 nm can be applied as color-tunable phosphors for white-light-emitting diode based on ultraviolet/phosphor technology.  相似文献   

17.
Photoluminescence properties of Bi3+ co-doped Eu3+ containing zinc borate glasses have been investigated and the results are reported here. Bright red emission due to a dominant electric dipole transition 5D07F2 of the Eu3+ ions has been observed from these glasses. The nature of Stark components from the measured fluorescence transitions of Eu3+ ions reveal that the rare earth ions could take the lattice sites of Cs or lower point symmetry in the zinc borate glass hosts. The significant enhancement of Eu3+ emission intensity by 346 nm excitation (1S03P1 of Bi3+ ions) elucidates the sensitization effect of co-dopant. The energy transfer mechanism between sensitizer (Bi3+) and activator (Eu3+) ions has been explained.  相似文献   

18.
Lanthanide ions emitting in the near-infrared (NIR) region possess an intrinsically small molar absorption coefficient in the ultraviolet (UV)-vis-NIR spectrum, which is unfavourable for pumping efficiency. On the contrary, using organic lanthanide complexes it is possible to populate the excited state levels of the emitting ion through an efficient intramolecular energy transfer from the optically excited ligands, which act as light-harvesting antennae.With the aim of studying and maximizing the transfer to lanthanide metals, we have synthesized oligothiophene and thiophenefluorene ligands bearing carboxylate clamps able to complex erbium and other lanthanide 3+ ions. The complexes of {4′-(hydroxycarbonyl)methyl-[2,2′;5′,2″]terthiophen-3′-yl}acetic acid and 9-(hydroxycarbonyl)-methyl-2,7-dithien-2-yl-[fluoren-9-yl-]acetic acid with Er3+ and different ancillary ligands have been prepared and their optical properties were carefully studied. Moreover, relaxation dynamics measurements have been carried out on all complexes in order to determine emission lifetimes, which result to be of the order of magnitude 2 μs. Quantum chemical calculations have been performed to explain optical absorption data in terms of different coordination types. The complexes containing phenanthroline/pyridine are modelled by adding to the dianion of the ligand one univalent/divalent counterion. The absorption spectra computed in this way are in close agreement with experiment, and the univalent→divalent theoretical wavelength shift goes in the right direction. The addition of a counterion has an even bigger effect on the triplet states, and hence on their matching with the emitting states of the ion.  相似文献   

19.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

20.
Double incorporation of Eu3+ and Tb3+ ions into a CaWO4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed.This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号