首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
YVO4:Bi3+,Eu3+ nanophosphors at a high Bi3+ concentration of 15 at% are synthesized from a Bi3+ source, nitrates of yttrium and europium(III), and sodium orthovanadate(V) by a low-temperature aqueous precipitation in the presence of citrate ions. When an ethylene glycol solution of bismuth(III) nitrate is used as a Bi3+ source, YVO4:Bi3+,Eu3+ nanophosphors of ∼20 nm in size crystallize during aging at 85 °C without any by-products where the contents of Bi3+ and Eu3+ incorporated into crystalline YVO4 are close to the respective nominal contents, as confirmed by transmission electron microscopy, X-ray diffractometry and X-ray fluorescent analysis. These nanophosphors show red emission corresponding to the f-f transition of Eu3+ under the excitation of Bi3+-V5+ charge transfer. When aging is continued after the completion of the crystallization, the photoluminescence intensity of nanophosphors reaches the constant value. This is the improved behavior in comparison to our previous work, where the photoluminescence intensity decreases after the prolonged aging because of the inhomogeneous doping of Bi3+ ions, and hence the concentration quenching.  相似文献   

2.
Ag enwrapped Y2O3:Eu3+ nanoparticles were prepared by a wet chemistry method, which was dispersed in liquid (glycol) or dried to powders. Their luminescence properties were studied in comparison to those in the un-enwrapped ones. The results demonstrated that in glycol the 5D0-7F2 transitions for Ag enwrapped Y2O3:Eu3+ nanoparticles became stronger than that for un-enwrapped ones, while the excitation charge transfer band shifted blue. On the contrary, the 5D0-7F2 transitions in Ag enwrapped Y2O3:Eu3+ powders became weaker than those in the un-enwrapped ones. It was suggested that in liquid the Ag shells thinly deposited in the surface of Y2O3:Eu3+ and insulated the Y2O3:Eu3+ from the liquid, which contained large organic vibration modes. As a result, the surface nonradiative energy transfer from Eu3+ to the organic modes decreased, and emission intensity of 5D0-7F2 increased. In the Y2O3:Eu3+ powders, the Ag shells absorbed the excitation light, leading to the decrease in excitation density and the intensity of 5D0-7F2.  相似文献   

3.
The salt 4-benzyl pyridinium dihydrogenmonophosphate is monoclinic P21/c with the following unit cell dimensions: ; ; ; and β=97.328(11). Also, , Dx=1.403, , F(000)=560; ; and R=0.0495 and Rw=0.0964 for 3733 independent reflections. The structure consists of infinite parallel two-dimensional planes built of H2PO4 anions and C6H5CH2C5H4NH+ cations mutually connected by strong O-H ?O and N-H ?O hydrogen bonding. There are no contacts other than the normal Van der Waals interactions between the layers. The conductivity relaxation parameters associated with some H+ conduction have been determined from an analysis of the spectrum measured in a wide temperature range.  相似文献   

4.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

5.
Luminescence spectral-kinetic studies have been performed for pure and Ce-doped LaPO4 micro- and nanosized phosphates using synchrotron radiation for the excitation within 5-20 eV energy range at T=8-300 K. Mechanisms for the excitation of Ce3+ 5d-4f emission as well as the quenching processes are discussed. The influence of surface defects has been considered to modify considerably the luminescent properties of nanosized phosphors upon the excitation in the energy range of Ce3+ 4f-5d transitions and LaPO4 host absorption.  相似文献   

6.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

7.
In this paper, we investigate the kinetics of photoluminescence in excited crystals of HgGa2S4 which have recently been proposed for implementing tunable luminescent devices. From photoluminescence experiments, performed at various temperatures and excitation powers, it appears that two kinds of radiative recombination processes take place during crystal excitation. These originate two bands in emission spectra which were resolved by means of a fitting procedure. The dependencies of these bands on temperature and excitation power density are explained by means of a specific kinetic model. A broad band, peaking at about 1.8 eV, is ascribed to electron-hole tunnel recombinations occurring in associated donor-acceptor pairs, according to a Prener-Williams scheme. The second narrow band, peaking at about 2.3 eV, is ascribed to electron-hole recombinations occurring in centres presenting short () and long-life () excited states. At room temperature, owing to thermally activated relaxation from short- to long-life states, these centres saturate under relatively low excitation powers. The tunability of photoluminescence is a consequence of competition between monomolecular and bimolecular recombination processes.  相似文献   

8.
9.
Eu3+-doped NaGdF4, KGdF4 and NH4GdF4 phosphors with little oxygen contamination have been synthesized by hydrothermal technique. The emission spectra show that the doped Eu3+ ions are located in noncentrosymmetric sites in the three compounds. The two-photon emission has been observed in NaGdF4:Eu3+ and KGdF4:Eu3+ compounds under VUV excitation from the ground states to higher 6GJ excited states of Gd3+ ions, while in Eu3+-doped NH4GdF4, emissions from 5D1,2,3 excited states of Eu3+ cannot be detected in the luminescence spectra.  相似文献   

10.
Er-doped SiO single layer and Er-doped SiO/SiO2 multilayers with different SiO thicknesses were prepared by evaporation. In the as-deposited samples, the erbium ions exhibit a very weak photoluminescence emission at 1.54 μm. This luminescence is strongly enhanced after annealing treatments between 500 and 1050 °C, with an optimal annealing temperature which is dependent from the SiO thickness. For the SiO single layer, this optimal temperature is around 700 °C while it is shifted at highest temperature for the multilayers. The origin of the higher luminescence intensity in the SiO layer is also discussed.  相似文献   

11.
Ba2+-doped Sr2SiO4:Eu2+ phosphors were synthesized with the high-temperature solid-state reaction technique. The experimental results, summarized in the successful production of a single-phase powder with fine microstructure of spherical particles with smooth surface, suggest that Ba2+-doping favors the stabilization of α′-Sr2SiO4. Rietveld refinement of X-ray diffractograms suggests that Ba2+ and Eu2+ ions occupy the sites of Sr2+ in the lattice of α′-Sr2SiO4. The produced phosphors show two intense emission bands at green and yellow regions of spectrum, originated from Eu2+ ions accommodated at two different sites in the host crystal, whose peaks depend on the concentrations of Ba2+ and Eu2+. Intense and broad excitation spectra extend from ultraviolet to the blue region.  相似文献   

12.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

13.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

14.
We synthesize Y3Al5O12:Ce3+ (YAG:Ce3+) nanoparticles in the presence of citric acid by glycothermal method. Fourier transform infrared absorption spectroscopy measurement indicates that the intensity of the peak corresponding to carboxyl groups coordinating to the nanoparticles increases with increasing amount of citric acid. At the same time, the primary particle diameter decreases from 10.2 to 4.0 nm. In addition, the internal quantum efficiency of the photoluminescence (PL) due to the 4f-5d transition of Ce3+ increases from 22.0% to 40.1% with increasing amount of citric acid. Two kinds of PL decay lifetimes, 16-26 and 72-112 ns, are detected for YAG:Ce3+ nanoparticles, whereas the micron sized YAG:Ce3+ bulk shows the lifetime of 57 ns. We discuss these phenomena from the aspects of the coordination of citric acid and the incorporation of Ce3+ ions into the nanoparticles.  相似文献   

15.
Upconversion luminescence has been studied for Er3+ in a germanate-oxyfluoride and a tellurium-germanate-oxyfluoride transparent glass-ceramic using 800 nm excitation. Significantly increased upconversion luminescence was observed from transparent glass-ceramics compared with that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm from 4S3/2 state and a weaker red emission centered at 662 nm from 4F9/2 state generally seen from Er3+-doped glasses, a violet emission centered at 410 nm from 2H9/2 state and a near-ultra-violet emission centered at 379 nm from 4G11/2 state were also observed from transparent glass-ceramics. The upconversion luminescence of Er3+ ions in transparent glass-ceramics revealed sharp Stark-splitting peaks generally seen in a crystal host. The increased upconversion efficiency is attributed to the decreased effective phonon energy and the increased energy transfer between excited ions when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

16.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

17.
Wet chemical synthesis of LiAEAlF6:Eu (AE=Mg, Ca, Sr or Ba) phosphors is described. Formation of single-phase compounds LiCaAlF6 and LiSrAlF6 was confirmed by XRD. LiCaAlF6:Eu and LiSrAlF6:Eu phosphors exhibited broadband emission corresponding to intraconfigurational transition 4f65d1→4f7(8S7/2). LiMgAlF6:Eu exhibits a narrow line emission corresponding to 6PJ8S7/2 transition of 4f7 configuration besides the band emission. LiBaAlF6:Eu, on the other hand, was found to yield predominantly line emission.  相似文献   

18.
In this Letter, 7F2 crystal field (CF) levels of surface Eu3+ in YVO4 nanocrystals are calculated employing a refined electrostatic point charge model, where surface states are simulated by point charges. Based on the theoretical 7F2 CF levels, emission spectra of YVO4: Eu3+ nanocrystals are assigned to Eu3+ under different local environments. and relaxation of selection rules by surface effect is discussed.  相似文献   

19.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation.  相似文献   

20.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号