首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescent properties of phosphors based on single-crystalline films (SCF) of Y3Al5O12:Ce (YAG:Ce) and Lu3Al5O12:Ce (LuAG:Ce) garnet have been analyzed in comparison with single-crystal (SC) analogues. It has been shown that the main peculiarity of luminescent properties of YAG:Ce and LuAG:Ce SCF as compared to SC is determined by the extremely low concentration of YAl3+ and LuAl3+ antisite defects (AD) in SCF. The advantages of phosphors based on YAG:Ce and LuAG:Ce SCF are caused by the absence in these SCF the additional channels for dissipation of excitation energy connected with AD and vacancy-type defects.  相似文献   

2.
This paper reports the spectral properties of Nd3+:Ca2Nb2O7. The spectral parameters of Nd3+ in Nd3+:Ca2Nb2O7 crystal have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained. The parameters of line strengths Ωλ are Ω2=4.967×10−20 cm2, Ω4=5.431×10−20 cm2, Ω6=5.693×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 122 μs, 103 μs and 84.4%, respectively. The fluorescence branch ratios calculated: β1=0.425, β2=0.479, β3=0.091, β4=0.004. The emission cross section at 1068 nm is 6.204×10−20 cm2.  相似文献   

3.
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb3+ ions) and the activators (Ce3+ and Eu3+ ions) in single-crystalline films of Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb3+ ions to Ce3+ and Eu3+ ions; (ii) from Ce3+ ions to Eu3+ ions by means of dipole-dipole interaction and through Tb3+ ion sublattice.  相似文献   

4.
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce3+-doped Lu3Al5O12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb2+-based centres were identified. The processes of energy transfer from the host lattice to Pb2+ and Ce3+ ions and from Pb2+ to Ce3+ ions were investigated. Competition between Pb2+ and Ce3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb2+ centres with the 3.6 eV absorption band of Ce3+ centres, an effective nonradiative energy transfer from Pb2+ ions to Ce3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce3+ centres and decrease of the Ce3+-related luminescence intensity.  相似文献   

5.
Photoluminescence of undoped and Cr3+-doped β-Ga2O3 was investigated. The transparent, undoped β-Ga2O3 film was successfully prepared by thermal conversion from GaOOH. The film exhibited predominant green luminescence in response to ultraviolet light excitation at 250 nm. This luminescence behavior, which was proposed to result from the oxygen defect centers, was used in examining excitation and emission mechanisms for Cr3+ ions doped in β-Ga2O3. It was found that red luminescence of Cr3+ surpasses green luminescence of the host lattice, as evidenced by the dependence of the spectral structure on the Cr3+ concentration. The excitation of Cr3+ was then suggested to be caused by the energy transfer from Ga3+O6 octahedra present in the monoclinic β-Ga2O3 lattice.  相似文献   

6.
The luminescence excitation spectra, emission spectra under photo- and X-ray excitation, luminescence decay kinetics and thermostimulated luminescence (TSL) of Gd3Ga5O12 garnet (GGG) polycrystalline samples have been investigated. It was established that the spectrum of Cr3+ ion emission were present in all TSL peaks. The activation energies of traps that are responsible for appearance of TSL in the region 295-600 K were estimated. It is shown that delocalization of electrons from the Cr3+e traps leads to the appearance of thermoluminescence (TL) glow peak at 390 K. The nature of other TSL peaks is discussed. The influence of visible light on the TSL intensity of the preliminary X-ray-irradiated samples is shown.  相似文献   

7.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

8.
Thin films of YCa4O(BO3)3 (YCOB)-based new luminescent materials were explored by the combinatorial pulsed laser deposition (PLD) method which enabled us to fabricate continuous composition spread film libraries. Strong red and green luminescence were found in the Y1−xEuxCOB (0 ≤ x ≤ 1), (YEuCOB) and Y1−yTbyCOB (0 ≤ y ≤ 1) (YTbCOB) films, respectively. The film libraries were characterized by photoluminescence (PL), PL decay, an electron-probe microanalyzer and an electron diffraction analysis. The luminescent intensities in the amorphous film libraries strongly depended on the chemical composition of each rare-earth (RE) ion. The optimum concentration of rare-earth ions in YEuCOB and YTbCOB were experimentally determined to be Eu = 7.5% and Tb = 20-30%, respectively.  相似文献   

9.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

10.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

11.
Long-lasting afterglow due to Tb3+ ions has been observed in a Tb3+-doped SiO2-Ga2O3-CaO-Na2O glass, where a 4s empty orbital of Ga3+ probably works as an electron-trapping center. The sensitization effect of Yb3+ on the afterglow has been noticed.  相似文献   

12.
Using the methods of time-resolved and steady-state luminescence spectroscopies, the luminescence and defects creation processes were studied at 4.2-300 K under excitation in the 3.0-10.5 eV energy range for an YAlO3:Ce crystal with very low concentration of Ce3+ ions. The results were compared with those obtained at the study of YAlO3:Ce crystals with large Ce3+ content coming from the same technological laboratory. Three irregular Ce3+ centers were found and two intrinsic defect luminescence centers related to the cation and oxygen vacancies were evidenced. The origin and structure of luminescence centers are discussed.  相似文献   

13.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

14.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

15.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system.  相似文献   

16.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

17.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

18.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

19.
Y2−xTbxSiO5 and Y2−xEuxSiO5 nanophosphors with seven different kinds of silicate sources were synthesized by sol-gel method. The structures have been investigated to be composed of nanometer-size grains of 30-60 nm through X-ray diffraction (XRD) and scanning electron microscopy (SEM) was used to compare the different morphology of patterns from seven different silicon sources. The photoluminescence of Y2−xTbxSiO5 was investigated as a function of silicate sources and the results revealed that these nanometer materials showed the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb ions. The characteristic emission 5D0 → 7FJ (J = 1, 2, 4) of Eu ions was also found in the materials of Y2−xEuxSiO5.  相似文献   

20.
Thin (AsSe)100−xAgx films have been grown onto quartz substrates by vacuum thermal evaporation or pulsed laser deposition from the corresponding bulk materials. The amorphous character of the coatings was confirmed by X-ray diffraction investigations. Their transmission was measured within the wavelength range 400-2500 nm and the obtained spectra were analyzed by the Swanepoel method to derive the optical band gap Eg and the refractive index n. We found that both parameters are strongly influenced by the addition of silver to the glassy matrix: Eg decreases while n increases with Ag content. These variations are discussed in terms of the changes in the atomic and electronic structure of the materials as a result of silver incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号