首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical SrTiO3:Pr3+,Al3+ phosphor with high crystallinity and uniform particle size distribution was formed from the glycolate precursor. The glycolate precursor was obtained by heating the mixed solution of metallic nitrates and titanium oxychloride in ethylene glycol up to 200 °C. The thermal decomposition of the glycolate precursor proceeded through three major stages, i.e., (i) evolution of glycols (∼200 °C), (ii) decomposition of glycolate precursor, and (iii) decomposition of strontium carbonate and crystallization of SrTiO3:Pr3+,Al3+ phosphor.SrTiO3:Pr3+,Al3+ phosphor exhibited a strong red emission, peaking at about 617 nm. SrTiO3:Pr3+,Al3+ phosphor obtained from the glycolate complex has higher luminescent properties than the conventional solid state reaction and the Pechini method in terms of photoluminescence (PL) and cathodoluminescence (CL). High crystallinity, low residual carbon content and small grain size with uniform shape would enhance the luminescence intensity of phosphor by the glycolate method due to high surface area per unit volume and low organic content compared with the Pechini method. Also, Al3+ ion is more effective than Ga3+ ion to enhance PL intensity of SrTiO3:Pr3+,Al3+ phosphor because of smaller Al3+ ion radius. Therefore, the glycolate method has been demonstrated to be a convenient and unique process for the production of muticomponent oxide with smaller grain size and higher crystallinity compared with the conventional mixed oxide reaction and the polymer precursor method.  相似文献   

2.
A novel and efficient method of providing moisture resistance of inorganic particles such as divalent europium activated strontium aluminate phosphors (Sr4Al14O25:Eu2+/Dy3+) was developed by firing the phosphor in the presence of appropriate amount of ammonium fluoride at a temperature of 600-700 °C. Scanning electron microscopy, X-ray diffraction, FT-IR, EDAX and Photoluminescence measurements were carried out to characterize the uncoated and coated samples. The pH measurements were carried out for the water resistivity measurements. The phosphor particles became coated with a moisture-impervious thin coating that did not suppress the luminescence of the phosphor and can withstand complete immersion in water for long periods of time, showing very high water resistivity.  相似文献   

3.
Eu2+-doped Sr3Al2O6 (Sr3−xEuxAl2O6) was synthesized by a solid-state reaction under either H2 and N2 atmosphere or CO atmosphere. When H2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu2+ ion. The relationship between the emission wavelengths and the occupation of Eu2+ at different crystallographic sites was studied. The preferential substitution of Eu2+ into different Sr2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips.  相似文献   

4.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

5.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

6.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

7.
Ultrafine particles of BaMgAl10O17:Eu2+ (BAM) phosphor were synthesized by a solid-state combustion reaction in a powder bed of 0.9BaCO3+MgO+5Al2O3+0.05Eu2O3+k(KClO3+1.5C) composition. A large exothermic reaction of the mixture (KClO3+1.5C) leads to a self-sustaining combustion mode. Under optimized combustion conditions, the product consisted of BAM powder and KCl was obtained. BAM ultrafine particles resulting from the combustion process were easily obtained by simply washing the salt by-product with water. Combustion-processed BAM phosphor shows a homogeneous grain size of 100-500 nm, good dispersity, regular morphology, and improved luminescence properties.  相似文献   

8.
A novel synthesis method was developed for the efficient red phosphor, Eu2+-activated Sr2Si5N8, by employing the strontium acetate as both the reducing agent and strontium source. The phase purity of final product was strongly dependent on the heating rate of the precursors. Sr2Si5N8:Eu2+ (2 at%) phosphor presented a broadband excitation spectrum in the range 300–500 nm, matching well with the blue emission (400/460 nm) of current InGaN light-emitting diodes (LEDs). The red emission peaking at 619 nm gave the relatively high (about 155%) intensity compared with the Y3Al5O12 (YAG) (P46-Y3) standard phosphor. In addition, the saturated chromatic coordinates (0.638, 0.359) allowed it a promising candidate as a red phosphor in white LEDs application for illumination or display.  相似文献   

9.
Using the combustion synthesis, CaYAl3O7:Er3+ phosphor powders co-doped with Yb3+ have been prepared at low temperatures (550 °C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er3+ doped CaYAl3O7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl3O7:Er3+ phosphor has been studied and the process involved is discussed.  相似文献   

10.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

11.
黄平  崔彩娥  王森 《中国物理 B》2009,18(10):4524-4531
A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3- by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3Al2O6:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250 C. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250 ℃ lasts for over 1000 s when the excited source is cut off.  相似文献   

12.
The aim of this work is to obtain the electroplating parameters for preparation of Ni-W/Al2O3 composite coating with high tungsten content, high micro-hardness and excellent wear resistance by pulse plating procedure. Our results showed that the duty cycle is a dominant parameter for the tungsten content in the coating and the tungsten content increases significantly with increasing duty cycle. The further analysis showed the great influence of tungsten content on micro-hardness of the coating. A maximum micro-hardness of about 859 Hv was obtained in pulse electrodeposited Ni-W/Al2O3 composite with tungsten content of 40 wt.% at a peak current density of 20 A/dm2, a duty cycle of 80%, a pulse frequency of 1000 Hz and a particle loading of 10 g/L alumina in the plating bath. Although the hardness of Ni-W/Al2O3 composite coating was only slightly affected by the alumina content of the deposits prepared in present investigation, the alumina content effect on the tribological characteristic of Ni-W/Al2O3 composite coatings is significant. The friction coefficient was lowered to 0.25 and the wear loss was reduced to 1.05 mg by setting the control factors according to the values mentioned above for obtaining the coating with the highest micro-hardness.  相似文献   

13.
Nano-size YBO3:Eu3+ phosphor has been synthesized by the co-precipitation method. X-ray diffraction (XRD) pattern confirmed the formation of hexagonal vaterite-type structures of YBO3:Eu3+ nanoparticles. The transmission electron microscopy (TEM) study revealed the formation of spherical YBO3:Eu3+ nanoparticles with size 20-40 nm. The photoluminescence spectra revealed that the ratio of the red emission (5D0-7F2) to the orange emission (5D0-7F1) was much higher in the synthesized nano-size YBO3:Eu3+ phosphor. The improved relative intensity, i.e., higher R/O value of emission peaks, is due to a lower symmetry of crystal field around Eu3+ ions.  相似文献   

14.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

15.
胡元  夏海平  张丽 《光子学报》2014,40(11):1646-1651
采用新型超声喷雾共沉淀法技术,以Lu2O3、Eu2O3、Al(NO3)3·9H2O为原料,制备了不同浓度Eu3+离子掺杂的Lu3Al5O12纳米粉体.用X射线粉末衍射表征了获得纳米粉体的相,用扫描电镜观察了纳米粒子的形貌.测定了粉体的激发光谱、7F0-5D2声子边带谱与发射光谱.研究了不同高温烧结温度与Eu3+掺杂浓度对纳米粒子的发光强度与粒子形貌的影响规律.研究表明,当烧结温度高于900 ℃时,粉体发光强度明显增强,并且随着煅烧温度的增加,发光强度有所增强.Eu3+离子的最佳掺杂浓度为5~7 mol%.根据稀土离子Eu3+光学跃起矩阵元的特点,从发射光谱获得Eu3+光学跃起的J-O参量Ω2与Ω4.在Eu3+掺杂浓度均为5 mol%时,其强度参量达最小,电-声子耦合最强.然后随着掺杂浓度的进一步提高,强度参量略有增加,电-声子耦合减弱.说明Eu-O键强增加,共价性增强,Eu3+的局域环境对称性降低.Ω2值低于Eu3+在玻璃与晶体基质中的情况,这是由于纳米粒子中存在着大量的缺陷以及晶体的结构畸变导致纳米粒子的对称性下降所致.  相似文献   

16.
Low thermal quenching and high-efficiency Ca3Sc2Si3O12:Ce3+ (CSSO:Ce3+) phosphors with co-doping Tb3+ ion were prepared by a solid state method and the properties of these phosphors were investigated. The results showed that co-doping of Tb3+ not only enhances the photoluminescence remarkably and decreases the thermal quenching of the phosphor, but also heightens the performances of the LEDs fabricated with the phosphor. A high-efficiency and low color temperature white LED was fabricated with the prepared CSSO:1%Ce3+, 0.5%Tb3+ and a red phosphor, indicating that CSSO:1%Ce3+,0.5%Tb3+ phosphor is a suitable green phosphor for the fabrication of high-efficiency white LEDs.  相似文献   

17.
The calcium aluminates doped with Eu ions, Ca5Al8O14: Eu, phosphors are prepared by the combustion method. The formation of crystalline aluminates was confirmed by X-ray diffraction pattern. The prepared phosphors were characterized by SEM, TGA, DTA, particle size analyzer and Photoluminescence (PL) techniques. From the UV-excited luminescence spectra it was found that the Eu ions acts as a luminescent centre with luminescence at the blue (λ max = 470 nm) region due to 4f 65d 1 → 4f 7 transition. The excitation spectra show the broad band at 355 nm wavelength (λ em = 470 nm). The excitation 355 nm is a mercury free excitation and therefore Ca5Al8O14: Eu may be useful for the solid state lighting phosphor in lamp industry.   相似文献   

18.
A series of Eu2+-activated Ba2Mg(BO3)2 yellow phosphors were prepared by a high temperature solid-state reaction. The phosphor emits intense yellow light under near ultraviolet excitation. Large Stokes shift can be attributed to the asymmetric nature of the Eu site and the lack of rigidity in the host. The concentration self-quenching mechanism of Ba2Mg(BO3)2:Eu2+ is d-d interaction and the critical transfer distance is calculated to be about 12.29 Å. Prototype light-emitting diodes were fabricated by coating the Ba2Mg(BO3)2:0.07Eu2+ phosphor onto ∼370 nm-emitting InGaN chips. The LEDs exhibit intense yellow-emitting under a forward bias of 20 mA. The results indicate that Eu2+-activated Ba2Mg(BO3)2 is a candidate as a yellow component for fabrication of near-UV white light-emitting diodes.  相似文献   

19.
Eu-doped Y2O3 particles with spherical shape and fine size were prepared by spray pyrolysis. The cathodoluminescence of Y2O3:Eu3+ powder was optimized by substituting small amount of zinc atoms in place of yttrium sites. As a result, the optimized (Y, Zn)2O3:Eu3+ phosphor showed 60% improved cathodoluminescence compared with Y2O3:Eu3+ particles. The prepared (Y, Zn)2O3:Eu3+ phosphor had spherical shape and 0.726 μm in mean size. Using these particles, the thickness of the phosphor film was controlled by varying the phosphor loading. The brightness and luminous efficiency of phosphor films prepared were monitored with varying the accelerating voltage ranges from 4 to 14 kV. The dependency of the luminous efficiency on the accelerating voltage was very sensitive to the phosphor loading. As increasing the accelerating voltage from 4 to 14 kV, the brightness of phosphor films prepared was monotonically increased from 200 to 1085 cd/cm2, but the saturation in the luminous efficiency appeared at 10 kV. The highest efficiency was achieved when the number of phosphor-particles layer was about 3. More details about the luminous efficiency and brightness were discussed with changing the phosphor loading.  相似文献   

20.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号