共查询到20条相似文献,搜索用时 12 毫秒
1.
Jong Seong Bae Kyoo Sung Shim Soung-soo Yi Young Soo Kim 《Applied Surface Science》2006,252(13):4564-4568
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films. 相似文献
2.
Thin films of the perylene derivative N,N′-dimethylperylene-3,4,9,10-bis-dicarboximide (MePTCDI) incorporated in SiO2 matrix at various concentrations are obtained by condensation of host and dye in high vacuum. Photoluminescence spectroscopy is applied to study the spectral properties of the layers. Significant alterations in luminescence spectra in dependence on dye quantity are explained as a consequence of dye aggregation and resonant energy transfer. We demonstrate that the deposition geometry and preparation conditions offer an effective way to reduce the possibilities for non-radiative transitions, thus increasing the photoluminescence quantum efficiency. 相似文献
3.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system. 相似文献
4.
Highly efficient transparent Zn2SiO4:Mn2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn2SiO4:Mn2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn2SiO4: Mn2+ crystals. 相似文献
5.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D0→7F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications. 相似文献
6.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors. 相似文献
7.
A simple solution-based route was used to selectively synthesize two ternary metal fluoride NaEuF4 nanorods with hexagonal structure and Na5Eu9F32 nanospheres with cubic structure at room temperature. It is found that NaEuF4 nanorods can be transformed into Na5Eu9F32 nanospheres with the increasing the reaction time in the presence of excessive NaF. The luminescence properties of these two metal fluorides were investigated and the possible formation mechanism was discussed. 相似文献
8.
The emission spectra of Lu2SiO5:Ce single crystal under the excitation of 266 nm laser were investigated. The emission spectra of LSO single crystal show no temperature quenching from 20 to 300 K, under the excitation of 266 nm laser with 2 mJ pulse energy. With rising temperature, the Ce1 emission is slightly decreased, while the Ce2 emission is slightly increased. These results show the emissions of Ce1 and Ce2 is not only dependent on the concentration ratio but also influenced by the possible energy transfer processes, including Ce1 to Ce2, intrinsic STHs to Ce2 and the phonon-assisted transfer processes. The spectral thermal broadening and the spectral overlap become evident at high temperature, leading to the enhancement of energy transfer. When the excitation power lowers, the ratio of Ce1 and Ce2 emission increases, and is close to the Xe lamp ultraviolet (UV) excitation, suggesting that the energy transfer from Ce1 center to Ce2 center may be also dependent on the excitation power. 相似文献
9.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D2→3H4 transition. In BaTi4O9:Pr3+, the emission of 3P0→3H4 transition at 490 nm was not observed. The results were in a pure red color emission. 相似文献
10.
Potential PDP phosphors with strong absorption around 172 nm: Rare earth doped NaLaP2O7 and NaGdP2O7
Jun Lin Yuan Jiao Wang Ding Bang Xiong Jing Tai Zhao Yi Bing Fu Chao Shu Shi 《Journal of luminescence》2007,126(2):717-722
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates. 相似文献
11.
Spectroscopic features of Pr, Nd, Sm and Er ions in Li2O-MO (Nb2O5, MoO3 and WO3)-B2O3 glass systems
Li2O-MO (Nb2O5, MoO3 and WO3)-B2O3 glasses doped with four rare earth ions, viz., Pr3+, Nd3+, Sm3+ and Er3+ (of 1.0 mol% each) were prepared. The glasses were characterized by X-ray diffraction, differential scanning calorimetry, ESR, optical absorption and photoluminescence spectra. From the measured intensities of various absorption bands of these glasses, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. The Judd-Ofelt theory could successfully be applied to characterize the absorption and luminescence spectra of these glasses. From this theory, various radiative properties like transition probability A, branching ratio βr, the radiative life time τr and the emission cross-section σE for various emission levels of these glasses have been determined and reported. An attempt has also been made to throw some light on the relationship between the structural modifications and luminescence efficiencies of all the three glasses. The analysis of the data indicated high non-radiative losses in Nb2O5 mixed glasses. 相似文献
12.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature. 相似文献
13.
Luminescent Ca1−xF2+x:Eux nanoparticles were synthesized by a chemical co-precipitation method in an ethanol solution. The Ca1−xF2+x:Eux nanoparticles exhibit a sphere-like morphology with particle diameter of about 15-20 nm. With increasing concentration of Eu3+ ion the intensity of XRD diffraction peaks decreased significantly and full width at half-maximum of the peaks increased gradually, which indicated that more Eu3+ ions resulted in the increase of structural defects. The emission spectrum of Ca1−xF2+x:Eux nanoparticles consisted of a few narrow, sharp lines corresponding to Eu3+ ions. The luminescence intensity of Ca1−xF2+x:Eux nanoparticles increased with increasing concentration of Eu3+ ion and reached a maximum at approximately 15 mol%. 相似文献
14.
Marcin Sobczyk 《Journal of luminescence》2009,129(5):430-418
In an attempt to find a neodymium-vanadate system with long lifetime of 4F3/2 level and relatively strong 4F3/2→4I11/2 emission for laser applications, the optical properties of Nd3+ in a new KZnLa(VO4)2 host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO4)2. KZnLa0.99Nd0.01(VO4)2 strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the 4F5/2 level (808 nm) or by the charge transfer bands of VO43−. The lifetime of 4F3/2 level of Nd3+ ion is larger than that observed in other neodymium-vanadates systems. 相似文献
15.
E. Coetsee 《Physica B: Condensed Matter》2009,404(22):4431-4435
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface. 相似文献
16.
We have synthesized blue-emitting CaMgSi2O6:Eu2+ (CMS) and evaluated its thermal stability after baking process. To evaluate its thermal stability, CMS was baked in air at 500 and 600 °C for 20 min, respectively, and compared with BaMgAl10O17:Eu2+ (BAM) treated in the same condition. After baking process, CMS showed somewhat increased photoluminescence (PL) intensity with baking temperature. To investigate the reasons behind the increase of PL intensity after baking process, vacuum ultraviolet (VUV)/PL, electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS) techniques were applied. From the ESR and the XPS analyses, it is noted that spectral intensity of Eu2+ ion somewhat increased. It was believed that due to charge balance Eu3+ ions reduced to Eu2+ ions during the baking process in air. It is clear that the concentration of Eu2+ increased after the baking process in air and it leads to slight increase of the VUV/PL intensity of CMS phosphor. 相似文献
17.
Qing Yang Sotaro Izumi Atsushi Tackeuchi Hirokazu Tatsuoka 《Applied Surface Science》2010,256(22):6928-6931
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4. 相似文献
18.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/2→6H15/2 (482 nm) and 4F7/2→6H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D2→3H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces. 相似文献
19.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D2→3H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property. 相似文献
20.
Ytterbium ions infrared and visible cooperative luminescences, resulting from YAG laser and selective site excitations, in (6%) Yb-doped Y2SiO5 thin film are analyzed. Magnetically coupled Yb-Yb ion pairs seem to play a major role in energy transfer and cooperative emission, confirming the prevalence of superexchange mechanisms. 相似文献