首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

2.
Er3+-doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed.  相似文献   

3.
We investigate the energy transfer between Er3+/Ho3+ in tellurite glasses. The main channels of energy transfer between Er3+/Ho3+ are analyzed in detail. The microscopic interaction parameters of resonant and non-resonant (phonon-assisted) energy transfer parameters via Er3+→Ho3+ are calculated. The result shows that the resonant energy transfers Er3+(2H11/2(4S3/2))→Ho3+(5F4(5S2)) and Er3+(4F9/2)→Ho3+(5F5) are very efficient and non-resonant energy transfers Er3+(4I13/2)→Ho3+(5I7) and Er3+(4I11/2)→Ho3+(5I6), which are a phonon-assisted energy transfer process because of energy mismatch are also existed and cannot be neglected.  相似文献   

4.
Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (∼730 cm−1) can be used as potential host material for up-conversion lasers.  相似文献   

5.
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Ω6 and Sed/(Sed+Smd) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Ω6 as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of 4F9/2 and 4S3/2 states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed.  相似文献   

6.
Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency.  相似文献   

7.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

8.
Tm3+/Yb3+-codoped germanate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional melting and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency.  相似文献   

9.
In this paper, we report the near-infrared luminescence from the Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped TeO2-ZnO-B2O3-Li2O-Na2O glasses for optical amplification. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) profiles of the host glass matrix have been carried out. From the DSC thermogram, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The near-infrared spectra of Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped glasses have shown full-width at half-maxima (FWHM) around 58, 127, 87 and 35 nm, respectively. These glasses with better thermal stability and broad near-infrared emissions should have potential applications in broadly tunable laser sources and broadband optical amplification at low-loss telecommunication windows.  相似文献   

10.
Electronic transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses corresponding to emissions in the infrared region were studied by means of absorption and emission spectroscopies and fluorescence lifetimes measurements. Transition probabilities, radiative lifetimes, branching ratios, and quantum efficiencies of most of the emission transitions including the infrared ones occurring around 1.3, 1.7, and 2.4 μm were estimated based on a standard Judd-Ofelt analysis.  相似文献   

11.
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm3+/Yb3+-codoped halide modified tellurite glasses have been studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm3+ in TFCB glass may be a potentially useful material for developing upconversion optical devices.  相似文献   

12.
The strong 479.1 nm blue cooperative upconversion luminescence of ytterbium Yb3+ ion doped oxyfluoride nanophase vitroceramics (Yb:FOV) is studied in this article. It is found that the 479.1 nm blue cooperative upconversion luminescence strength of Yb(5):FOV is 230 times greater than that of fluoride glass Yb(3):ZBLAN. The large enhancement on cooperative upconversion blue luminescence of this article results from the comprehensive improvement on the aspects of better coupled chance of the Yb3+-Yb3+ cluster, less cross-relaxation, better concentration contribution of Yb3+ activator, non-saturation, and better upconversion luminescence efficiency.  相似文献   

13.
Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation.  相似文献   

14.
In this work we used the Thermal Lens (TL) technique to discriminate two important processes responsible to reduce the upper-state population and fluorescence quantum efficiency (η) in Cr3+ doped colquiriite crystals: the thermal quenching of the fluorescence (TQF) and the Auger upconversion (ETU). We observed a nonlinear increase of the TL signal with laser power due to the decrease of η by ETU and/or TQF. The analysis of these curves allowed the determination of the thermal load, the increase of the crystal temperature as a function of the pump excitation and the discrimination between ETU and TQF processes.  相似文献   

15.
Luminescence properties of Eu3+ doped TeO2-PbO-GeO2 glasses containing gold nanoparticles (NPs) were investigated. The emission spectra of the samples exhibited enhancement of Eu3+ luminescence due to the presence of gold NPs. The emission at 614 nm, due to the Eu3+ hypersensitive transition 5D0-7F2, is much influenced by the gold NPs and increases by ≈100% for samples heat-treated at 350 °C during 41 h.  相似文献   

16.
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649 nm corresponding to the transitions 1G43H6 and 1G43H4 of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3%=3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+.  相似文献   

17.
The temperature-dependent luminescence of Sm2+ ions in MBPO5 was studied. At low temperature, Sm2+ in this series shows 4f6→4f6 luminescence with only a single emission line observed for the transition, revealing that only one crystallographic cationic site is available for Sm2+ in all the hosts. With increasing temperature, the emission intensity of the transition increases whereas that of the transitions decreases. The transitions of Sm2+ were observed in BaBPO5 and its intensity increases with increasing temperature. At , a broad band of the 4f55d→4f6 luminescent transition of Sm2+ in SrBPO5 and BaBPO5 with maximum at appears due to the thermal population. The lifetime of the transition was recorded at different temperatures, showing a single exponential decay for Sm2+ in SrBPO5 and BaBPO5 but a non-single-exponential decay in CaBPO5.  相似文献   

18.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

19.
This paper reports polarized spectral properties and energy levels of Cr3+ in KAl(MoO4)2 crystal. The absorption and emission cross sections are estimated as 3.72×10-20 cm2 at 669 nm and 2.74×10-20 cm-2 at 823 nm for σ-polarization, respectively. The energy levels of Cr3+ ion in KAl(MoO4)2 crystal were calculated based on the Tanabe-Sugano theory. It is suggested that Cr3+ ions occupy at an intermediate crystal field site in Cr3+:KAl(MoO4)2.  相似文献   

20.
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+-codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (∼750 cm−1) can be used as potential host material for upconversion lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号