首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on effective-mass approximation, we present a three-dimensional study of the exciton in GaN/AlxGa1−xN vertically coupled quantum dots (QDs) by a variational approach. The strong built-in electric field due to the piezoelectricity and spontaneous polarization is considered. The relationship between exciton states and structural parameters of wurtzite GaN/AlxGa1−xN coupled QDs is studied in detail. Our numerical results show that the strong built-in electric field in the GaN/AlxGa1−xN strained coupled QDs leads to a marked reduction of the effective band gap of GaN QDs. The exciton binding energy, the QD transition energy and the electron-hole recombination rate are reduced if barrier thickness LAlGaN is increased. The sizes of QDs have a significant influence on the exciton state and interband optical transitions in coupled QDs.  相似文献   

2.
Within the framework of the effective-mass approximation and variational approach, we present calculations of the bound exciton binding energy, due to an ionized donor, in wurtzite InxGa1−xN/GaN strained quantum dots (QDs), considering three-dimensional confinement of the electron and hole in the QDs and the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Our results show that the position of the ionized donor, the strong built-in electric field, and the structural parameters of the QDs have a strong influence on the donor binding energy. The variation of this energy versus position of the donor ion is in double figures of milli-electron volt. Realistic cases, including the donor in the QD and in the surrounding barriers, are considered.  相似文献   

3.
The binding energies of the hydrogenic impurity in wurtzite InGaN coupled quantum dots (QDs) are calculated by means of a variational method, considering the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located in the center of the left dot, the donor binding energy is largest and insensitive to the barrier height of the wurtzite InGaN coupled QDs.  相似文献   

4.
Bound electron-hole pairs—excitons—are Bose particles with small mass. Exciton Bose-Einstein condensation is expected to occur at a few degrees Kelvin—a temperature many orders of magnitude higher than for atoms. Experimentally, an exciton temperature well below 1 K is achieved in coupled quantum well (CQW) semiconductor nanostructures. In this contribution, we review briefly experiments that signal exciton condensation in CQWs: a strong enhancement of the indirect exciton mobility consistent with the onset of exciton superfluidity, a strong enhancement of the radiative decay rate of the indirect excitons consistent with exciton condensate superradiance, strong fluctuations of the indirect exciton emission consistent with critical fluctuations near the phase transition, and a strong enhancement of the exciton scattering rate with increasing concentration of the indirect excitons revealing bosonic stimulation of exciton scattering. Novel experiments with exciton condensation in potential traps, pattern formation in exciton system and macroscopically ordered exciton state will also be reviewed briefly.  相似文献   

5.
We describe hidden symmetry and its application to the construction of exact correlated states of electrons and holes in quantum dots. The hidden symmetry is related to degenerate single particle energy shells and symmetric interactions. Both can be engineered in a quantum dot. We focus on hidden symmetry involving spin singlet pairing of electrons and spin singlet pairing of holes. Detailed calculations for a third shell are presented to illustrate the mechanism of pairing.  相似文献   

6.
Resonant photoluminescence experiments performed on self-assembled InAs/GaAs quantum dots under strong magnetic field up to 28 T give rise to an accurate determination of the interband magneto-optical transitions. As this technique minimizes the effect of the homogeneous broadening of the transitions due to the size and composition fluctuations of the dots, the experimental spectra display well-defined peaks. A good agreement is found between the experimental data and calculations using an effective mass model including the coupling between the mixed exciton-LO phonon states. Transitions involving excitonic polarons are clearly identified. Moreover, a light-hole to conduction transition is also evidenced in agreement with previous theoretical predictions.  相似文献   

7.
We theoretically study the energy levels of an exciton in a quantum dot. We take in to account both quadratic and Coulomb terms. Next, we use the method of series to solve the Schrödinger equation exactly. Using this formalism, we have calculated the exciton energy in both ground and excited states. The results are comparable to those of variational exact diagonolization, full configuration interaction, Hartree-Fock and 1/N methods. Our approach could be fitted for any desired material.  相似文献   

8.
Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF, and the structure parameters of the QD system.  相似文献   

9.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

10.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in a zinc-blende (ZB) InGaN/GaN cylindrical quantum dot (QD) is investigated using a variational procedure. Numerical results show that the donor binding energy is highly dependent on impurity position and QD size. The donor binding energy Eb is largest when the impurity is located at the center of the QD. The donor binding energy is decreased when the dot height (radius) is increased.  相似文献   

11.
I theoretically investigate the Stark shift of the exciton goundstate in two vertically coupled quantum dots as a function of the interdot distance. The coupling is shown to enhance the tuneability of the linear optical properties, including energy and oscillator strength, as well as the exciton polarizability. The coupling regime that maximizes these properties results from the detailed balance between the effects of the single-particle tunneling, of the electric field and of the carrier-carrier interaction. I discuss the relevance of these results to the possible implementation of quantum-information processing based on semiconductor quantum dots: in particular, I suggest the identification of the qubits with the exciton levels in coupled- rather than single-dots.  相似文献   

12.
The bound states of the barrier D center, which consists of a positive ion located on the z-axis at a distance λ from the two-dimensional quantum disc plane with a confined parabolic potential and two electrons in the disc plane bound by the ion, are studied under a perpendicular homogeneous magnetic field. The binding energies of the three lowest bound states are calculated as a function of the applied magnetic field strength γ. Discontinuous ground state transitions induced by an external magnetic field have been obtained. We have investigated the effect of the impurity position and found that the transition of the ground-state occurs for finite λ with increasing γ.  相似文献   

13.
Considering the strong built-in electric field (BEF) induced by the spontaneous and piezoelectric polarizations and the intrasubband relaxation, we investigate the linear and nonlinear intersubband optical absorptions in InxGa1-xN/AlyGa1-yN strained single quantum wells (QWs) by means of the density matrix formalism. Our numerical results show that the strong BEF is on the order of MV/cm, which can be modulated effectively by the In composition in the QW. This electric field greatly increases the electron energy difference between the ground and the first excited states. The electron wave functions are also significantly localized in the QW due to the BEF. The intersubband optical absorption peak sensitively depends on the compositions of In in the well layer and Al in the barrier layers. The intersubband absorption coefficient can be remarkably modified by the electron concentration and the incident optical intensity. The group-III nitride semiconductor QWs are suitable candidate for infrared photodetectors and near-infrared laser amplifiers.  相似文献   

14.
Binding energies of ground and a few low lying excited states of a hydrogenic donor confined in a zinc-blende GaN/AlGaN quantum well are investigated. They are computed within the framework of single band effective mass approximation, by means of a variational approach. The donor states are investigated with the various impurity positions as a function of well width. The calculations have been carried out with the inclusion of conduction band non-parabolicity through the energy dependent effective mass. The variational solutions have been improved by using a two-parametric trial wavefunction. The results seem better and good agreement with the other investigators. To support our results, we observe that the values of variational parameters are consistent when two parameter wave function is used. We find that the inclusion of non-parabolic effects leads to more binding for all the values of well width and is significant for narrow wells. The results are compared with the existing available literature.  相似文献   

15.
We report the type and nature of the surface states in PbS quantum dots grown in poly vinyl alcohol by the colloidal technique. Mercaptoethanol (C2H5OSH) capping and the molar ratio of Pb:S were used as parameters to understand the origin of the surface state related photoluminescence. From absorption and photoluminescence measurements, it was observed that increasing Lead concentration resulted in bigger nanoparticles with broad size distribution. However, the increase in sulfur concentration helped in the formation of smaller nanoparticles with narrow size distribution. Passivation studies also revealed that the origin of the bands below 1.1 eV was sulfur related. Thus these experiments indicated that sulfur played an important role, not only in size selectivity, but also in controlling defects in PbS quantum structures. Temperature dependent PL studies on different samples with various Pb:S molar ratios and with mercaptoethanol treated gave an insight into the nature of the surface states. Based on these results, we explain the origin of the surface states and proposed a model for different PL bands. The observed temperature-dependent trends of PL intensity (decreasing in Pb:S::1:1, increasing in S terminated and anomalous behavior in samples with excess of Pb) is attributed to the dominant mid-gap states and the results are consistent with carrier redistribution and recombination statistics involved in the quantum structures.  相似文献   

16.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

17.
A investigation of the linear and nonlinear optical properties of an exciton in a spherical parabolic quantum dot has been performed by using the matrix diagonalization method. The optical absorption coefficients between the ground state (L=0,π=+1) and the first excited state (L=1,π=-1) have been examined based on the computed energies and wave functions. The results are presented as a function of the incident photon energy for the different values of the incident optical intensity and the confinement strength. We found the optical absorption coefficient is strongly affected by the incident optical intensity and the confinement strength.  相似文献   

18.
19.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

20.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号