首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Cd1−xZnxS (0?x?0.5) nanocrystals have been synthesized using a simple chemical precipitation method. Morphological and crystallographic analyses have been done using transmission electron microscope (TEM) and X-ray diffraction (XRD). Room temperature energy and time resolved photoluminescence spectra of these synthesized nanophosphors have been studied using xenon lamp spectroflourometer and high peak power, pulsed N2-laser excitation, respectively. Photoluminescence spectra are composed of broad peaks ranging from green to red region of the visible spectrum. Important optical parameters: excited state lifetime, trap-depth and decay constant values have been calculated from recorded luminescence decay curves. These nanophosphors show typical lifetime shortening and high quantum yield with increasing concentration of Zn.  相似文献   

2.
Cd1−xMnxTe thin films were fabricated by thermal interdiffusion of multilayers of sputtered compound semiconductors as well as thermally evaporated elements. Electron microscopy revealed their nanostructures. The alloys have been investigated for evaluation of optical and electronic parameters. Spectrophotometry helped to find out the bandgap and composition; photoluminescence was used for observing relative transition probabilities at room temperature. Photoresponse showed the light dependence of the resistance of the alloy films. Hall measurements and four-probe tests indicated the influence of manganese on the room-temperature electronic properties of the alloy.  相似文献   

3.
The hydrogen absorption behavior of Laves phase Ho1−xTixCo2 (x=0.1-0.6) alloys has been investigated by pressure-concentration (PC) isotherms and cyclic-, temperature- and pressure-dependent absorption kinetics. The PC isotherms and kinetics of hydrogen absorption have been studied in the pressure range 0.01-1 bar and temperature range 50-200 °C using Sievert's-type apparatus. The drastic changes in the induction period and particle size during the activation process have been discussed based on the kinetics of repeated hydrogenation cycles and scanning electron microscopy (SEM) images of the hydrides at different hydriding cycles, respectively. The experimental results of kinetic curves are interpreted using the Johnson-Mehl-Avrami (JMA) model, and the reaction order and reaction rate have been determined. The α-, (α+β)- and β-phase regions in Ho1−xTixCo2-H have been identified from the different slope regions of the first-order-type kinetic plots. The dependence of the reaction rate parameter on hydriding pressure and temperature in the (α+β)-phase region has been discussed.  相似文献   

4.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

5.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

6.
Uniform and transparent thin films of Zn1−xMnxO (0?x?0.10) were fabricated by a sol-gel spin coating method. XRD results indicated the hexagonal structure of ZnO as the primary phase at all concentrations (x) of Mn. However, at x?0.035, Mn3O4 (tetragonal) is observed as the secondary phase, which was confirmed by selected-area electron diffraction patterns. SEM and TEM results showed a tendency of grains to arrange into wire-shaped morphologies, leading to elongated needle-like structures at high Mn addition. Increasing Mn content in the range 0?x?0.10 led to quenching of photoluminescence, increase in the band gap (Eg) from 3.27 to 3.33 eV, and increase in film thickness, refractive index and extinction coefficient of Zn1−xMnxO thin films. The residual stress evaluated was compressive in all cases and found to increase by an order of magnitude with addition of Mn. Furthermore, an overall increase in microhardness and yield strength of Zn1−xMnxO thin films at higher Mn concentrations is attributed to change in microstructures, presence of secondary phase and increase in film thickness.  相似文献   

7.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction.  相似文献   

8.
Magnetic materials such as NixZn(1−x)Fe2O4 have resonant frequency in high frequency; therefore, they are more useful especially in microwaves. The NixZn(1−x)Fe2O4 was prepared by the chemical coprecipitation method using citrate precursors, and the fritless thick film was screen printed on alumina substrates. The composition-dependent permeability and permittivity in the high frequency 8–12 GHz are investigated. Using the overlay technique on Ag-thick-film patch antenna, the change in reflectance and transmittance has been measured. The NixZn(1−x)Fe2O4 thick film, when used as overlay on Ag-thick-film patch antenna, changes the resonance characteristics. The changes in resonance frequency, reflectance and transmittance have been used to calculate the permeability and permittivity of the thick film. Zinc-concentration-dependent changes are obtained.  相似文献   

9.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

10.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

11.
Magnetic and specific heat measurements have been carried out on polycrystalline series of single-phase Dy1−xLaxNi2 (0?x?1) solid solutions. The compounds have a Laves-phase superstructure (space group F4¯3m) with the lattice parameter gradually increasing with decreasing Dy content. The samples with x?0.8 are ferromagnetic with the Curie temperature below 22 K. At high temperatures, all solid solutions are Curie-Weiss paramagnets. The Debye temperature, phonon and conduction electron contributions as well as a magnetic contribution to the heat capacity have been determined from specific heat measurements. The magnetocaloric effect was estimated from specific heat measurements performed in a magnetic field of 0.42 and 4.2 T.  相似文献   

12.
Using first-principles total energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and thermodynamic properties of potassium halides (KClxBr1−x, KClxI1−x and KBrxI1−x), with x concentrations varying from 0% up to 100%. The effect of composition on lattice constants, bulk modulus, band gap and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the three alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram.  相似文献   

13.
Amorphous soft magnetic ribbons Fe73.5−xCrxSi13.5B9Nb3Cu1 (x=1–5) have been fabricated by rapid quenching on a single copper wheel. The differential scanning calorimetry (DSC) patterns showed that the crystallization temperature of α-Fe(Si) phase is ranging from 542 to 569 °C, a little higher than that of pure Finemet (x=0). With the same annealing regime, the crystallization volume fraction as well as the particle size of α-Fe(Si) crystallites decreased with increasing Cr amount substituted for Fe in studied samples. Especially, the interesting fact is that the laminar structure of heat-treated ribbons on the surface contacted to copper wheel in the fabricating process has been firstly discovered and explained to be related to the existence of Cr in studied samples. The hysteresis loop measurement indicated that there is the pinning of displacement of domain walls. The giant magnetocaloric effect (GMCE) has been found in amorphous state of the samples. After annealing, the soft magnetic properties of investigated nanocomposite materials are desirably improved.  相似文献   

14.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

15.
In order to prepare fluorescent material for UV-LED used as illumination light source, two series of Eu2+ doped (1 mol%) alkaline earth aluminate phosphors CaxSr1−xAl2O4 and BaxSr1−xAl2O4 were prepared. The crystal structure, relative quantum efficiency(Qr), peak wavelength(λp), color tuning and chromaticity were investigated by XRD patterns and photoluminescence (PL) on samples prepared by solid solution system (s series) and powder mixing system (m series) respectively. For the s series, the synthesized CaxSr1−xAl2O4:Eu2+ powders show that the structure transforms from monoclinic to hexagonal at x?0.5, and λp increases from 442.3 to 529.7 nm with decreasing x. For the BaxSr1−xAl2O4:Eu2+ system, the structure transforms from monoclinic to hexagonal at x?0.3, and λp decreases from 520.5 to 502.2 nm continuously from x=0 to 1. The shift in λp could be explained by the crystal field effect, which is affected by different coulomb attractive forces due to the various fraction of alkaline earth cation in the host lattice. Different phosphor properties prepared by either solid solution or powder mixing methods were characterized by chromaticity measurements for both reflective and transmissive modes.  相似文献   

16.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

17.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

18.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

19.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

20.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号