首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

2.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

3.
The red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor is improved in the emission charateristics by charge compensation, of which chromaticity coordinates (CIE) are x=0.66 and y=0.33. Three approaches to charge compensation are investigated, namely (a) 3Ca2+/Sr2+→2Eu3+/Gd3++vacancy, (b) 2Ca2+/Sr2+→Eu3+/Gd3++M+(M+ is a monovalent cation like Li+, Na+ and K+ employed as a charge compensator) and (c) Ca2+/Sr2+→Eu3+/Gd3++N (N is a monovalent anion like F, Cl, Br and I employed as charge compensation ions). Through photoluminescent spectra analyzing the radiative and non-radiative relaxation mechanisms of luminescent system are obtained. Under 20 mA forward-bias current, one red-emitting LED is made by combining 390-405 nm-emitting LED chip and the phosphor. The red-emitting phosphor has broad prospects in LED application field.  相似文献   

4.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

5.
Rare-earth-doped polycrystalline Ca3(PO4)2:Eu, Ca3(PO4)2:Dy and Ca3(PO4)2:Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu3+ ion in Ca3(PO4)2:Eu and Dy3+ ion in Ca3(PO4)2:Dy lattice sites. The TL glow curve of the Ca3(PO4)2:Eu compounds has a simple structure with a prominent peak at 228 °C, while Ca3(PO4)2:Dy peaking at 146 and 230 °C. TL sensitivity of phosphors are compared with CaSO4: Dy and found 1.52 and 1.20 times less in Ca3(PO4)2:Eu and Ca3(PO4)2:Dy phosphors, respectively. The Ca3(PO4)2:Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu3+ and Dy3+ ion in Ca3(PO4)2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.  相似文献   

6.
Ni3–xCr2x/3(PO4)2 (x=0 and 0.02) microcrystalline powders were obtained as single phases via a modified sol–gel Pechini-type in situ polymerizable complex method. The samples were characterized using scanning electron microscopy, X-ray diffraction, cathodoluminescence (CL), and thermoluminescence (TL) techniques. We found that Cr3+ doping modified the average particle and distribution. The mean particle size was 0.441 μm for Ni3(PO4)2 and 0.267 μm for Ni2.98Cr0.013(PO4)2. The results also reveal that Cr3+ doping notably enhanced the CL and TL UV-blue emission.  相似文献   

7.
YVO4:Eu3+-based red-emitting phosphors with the compositions of Y0.95−xVO4:0.05Eu3+,xBi3+ (x=0.01, 0.03, 0.05, 0.07 and 0.09) and Y0.90(V1−zPz)O4:0.05Eu3+,0.05Bi3+ (z=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized by the high temperature solid-state method. The as-prepared phosphors have the similar tetragonal phase structure and their morphologies varied with the relative content ratio of V to P. The photoluminescence spectra for the as-synthesized phosphors show that a dominant red emission line at around 619 nm, which is due to the Eu3+ electric dipole transition of 5D0-7F2, is observed under different excitation wavelengths (254 and 365 nm). Further, the emission intensities of 5D0-7F2 transition upon 365 nm excitation increase sharply owing to the Bi3+ doping. Energy transfer process, luminescent lifetime and quantum efficiency for the selected Y0.90(V1−yPy)O4:0.05Eu3+,xBi3+phosphors were also studied in detail.  相似文献   

8.
The strong vibronic one-phonon side-bands of the 5D07F0 emission of Eu3+ in {(C4H9)4N}3 EuxY1?x(NCS)6 are used to compute the Huang-Rhys electron-phonon coupling factor (S0) of Eu3+ with the mode at 35 cm-1. Increasing concentration from 1 to 100 is found to lead to a doubling of the electron-phonon coupling strength. Generalization of such an effect is proposed as a new hypothesis for part of the self-quenching process of rare-earth ions.  相似文献   

9.
Luminescent Ca1−xF2+x:Eux nanoparticles were synthesized by a chemical co-precipitation method in an ethanol solution. The Ca1−xF2+x:Eux nanoparticles exhibit a sphere-like morphology with particle diameter of about 15-20 nm. With increasing concentration of Eu3+ ion the intensity of XRD diffraction peaks decreased significantly and full width at half-maximum of the peaks increased gradually, which indicated that more Eu3+ ions resulted in the increase of structural defects. The emission spectrum of Ca1−xF2+x:Eux nanoparticles consisted of a few narrow, sharp lines corresponding to Eu3+ ions. The luminescence intensity of Ca1−xF2+x:Eux nanoparticles increased with increasing concentration of Eu3+ ion and reached a maximum at approximately 15 mol%.  相似文献   

10.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

11.
《Current Applied Physics》2015,15(3):248-252
Red phosphors Ca9Bi1-x(PO4)7:xEu3+ (x = 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid-state reaction (SSR) route. The X-ray diffraction patterns, photoluminescence spectra, ultraviolet–visible reflection spectroscopy, decay time and the International Commission on Illumination (CIE) chromaticity coordinates of these compounds were characterized and analyzed. The Eu-doped Ca9Bi(PO4)7 phosphors exhibited strong red luminescence which peaks located at 615 nm due to the 5D07F2 electric dipole transition of Eu3+ ions after excitation at 393 nm. Ultraviolet–visible spectra indicated that the band-gap of Ca9Bi0.30(PO4)7:0.70Eu3+ is larger than that of Ca9Bi(PO4)7. The results indicate that the phosphor Ca9Bi0.30(PO4)7:0.70Eu3+ can be a suitable red-emitting phosphor candidate for LEDs.  相似文献   

12.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

13.
Eu3+-doped La2O3 nanocrystalline powder was prepared by polymer complex solution method and further used for preparation of Eu3+-doped La(OH)3. Structural and optical characterization was carried out by powder X-ray diffraction and photoluminescent spectroscopy. XRD measurements confirmed the formation of hexagonal La2O3 and its recrystallization into La(OH)3 in a humid atmosphere. Excitation spectra show redshift of host lattice and charge transfer emission bands in La(OH)3 while bands that correspond to Eu3+f–f transitions are placed at same wavelengths in both samples. Photoluminescence spectra recorded over the temperature range from 10 K to 300 K show that intensities of emission lines in Eu3+-doped La2O3 do not depend on temperature as much as in La(OH)3 sample. Observed dominant 5D07F2 and markedly visible 5D07F0 emissions in doped La2O3 indicate that Eu3+ ion is located in a structural site without an inversion center. On the other hand, in Eu3+-doped La(OH)35D07F0 transition is barely visible while 5D07F2 is not prominent, and with temperature drop three 5D07FJ (J=1, 2, 4) transitions become almost of the same intensity. In both La2O3 and La(OH)3 structures Eu3+ ion replaces La3+ in non-centrosymmetric C3v and C3h crystallographic sites, respectively, and difference in symmetry of the crystal field around europium ion is explained by comparing shape and volume of these sites. Decay times of the 5D0- level recorded over the temperature range 10−300 K revealed that emission lifetime values in La2O3 (~0.7 ms) are almost two times higher than in La(OH)3 (~0.4 ms), and unlike in La2O3, lifetime in La(OH)3 is temperature dependent.  相似文献   

14.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

15.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

16.
Dy3+: Ca3(BO3)2 crystal was grown successfully by the Czochraski technique. The absorption spectrum was measured and its absorption peaks were assigned. The Judd-Ofelt intensity parameters were found to be Ω2=5.216×10−20, Ω4=1.858×10−20, Ω6=0.623×10−20 cm2. The spectroscopic parameters of this crystal such as the oscillator strengths, radiative transition probabilities, radiative lifetime as well as the branching ratios were calculated. Also, room temperature luminescence decay curve in correspondence with the emission line 4F9/26H13/2 centered at 575 nm was measured.  相似文献   

17.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

18.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

19.
A series of Eu3+ activated K3Y1?xEux(PO4)2 phosphors were synthesized by the solid-state reaction method. The structures and photoluminescent properties of these phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the monoclinic K3Y(PO4)2 or K3Eu(PO4)2. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370–410 nm) light. The orange emission from transition 5D07F1 is dominant, and the peak value ratio of 5D07F1/5D07F2 is 1.44. The emission spectra exhibit strong reddish orange performance (CIE chromaticity coordinates: x=0.63, y=0.36), which is due to the 5D07FJ transitions of Eu3+ ions. The relationship between the structure and the photoluminescent properties of the phosphors was studied. The absence of concentration quenching of Eu3+ was observed in K3Y1?xEux(PO4)2. K3Eu(PO4)2 has potential application as a phosphor for white light-emitting diodes.  相似文献   

20.
A red-emitting phosphor of Eu3+-doped calcium–tellurium–zinc oxide, Ca3Te2(ZnO4)3, with a garnet-type structure was synthesized by high temperature solid-state reactions. This phosphor exhibited a strong red emission. The photoluminescence excitation spectrum showed that Ca3Te2(ZnO4)3:Eu3+ can be effectively excited by UV–visible light. The property of long-wavelength excitation for this material has a benefit as a red phosphor in application of white light-emitting diodes. The colour coordinates were calculated. The excitation and emission spectra and luminescence decay curves were obtained using a pulsed, tunable, narrowband dye laser. Crystallographic sites and charge compensation mechanism of Eu3+ ions were discussed. The emission line from Eu3+ in intrinsic crystallographic site in the lattice was located at 579.56 nm. The emission line from Eu3+ in another disturbed site, which is created by the defects created by the charge-compensation, was located at 580.88 nm. The disordered crystallographic sites of Eu3+ are benefit for their strong red luminescence corresponding to the 5D07F2 transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号