首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Low temperature quenching and high efficiency CaSc2O4:Ce3+ (CSO:Ce3+) phosphors co-doped with Tm3+, La3+ and Tb3+ ions were prepared by a solid state method and the phase-forming, morphology, luminescence and application properties of these phosphors were investigated. The results showed that co-doping of Tm3+, La3+ and Tb3+ ions can improve the luminescence properties and decrease temperature quenching of CSO:Ce3+ phosphor remarkably. High efficiency green-light-emitting diodes were fabricated with the prepared phosphors and InGaN blue-emitting (∼460 nm) chips. The good performances of the green-light-emitting LEDs made from co-doped CSO:Ce3+ phosphors confirm the luminescence enhancement and indicate that Tm3+, La3+ and Tb3+ co-doped CSO:Ce3+ phosphors are suitable candidates for the fabrication of high efficiency white LEDs.  相似文献   

2.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

3.
Low thermal quenching and high-efficiency Ca3Sc2Si3O12:Ce3+ (CSSO:Ce3+) phosphors with co-doping Tb3+ ion were prepared by a solid state method and the properties of these phosphors were investigated. The results showed that co-doping of Tb3+ not only enhances the photoluminescence remarkably and decreases the thermal quenching of the phosphor, but also heightens the performances of the LEDs fabricated with the phosphor. A high-efficiency and low color temperature white LED was fabricated with the prepared CSSO:1%Ce3+, 0.5%Tb3+ and a red phosphor, indicating that CSSO:1%Ce3+,0.5%Tb3+ phosphor is a suitable green phosphor for the fabrication of high-efficiency white LEDs.  相似文献   

4.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

5.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

6.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

7.
A flux fusion method was used to obtain the various sizes of Eu3+-activated Y2O3 red phosphors. The flux material was selected as an independent variable to control the physical properties of phosphor particles and their effects on the morphology and size distribution of phosphors were examined by scanning electron microscopy. The concentration of the flux materials and synthetic temperature were optimized for maximal photoluminescence intensity. Fluoride-based flux materials were found to work for the crystal formation of Eu3+-activated Y2O3. In particular, when a BaF2 flux was used during the reaction at 1450 °C for 3 h, the photoluminescence (PL) intensity of Eu3+-activated Y2O3 was 25% higher than that without a flux and spherical phosphors had a mean particle size of 4-5 μm. The morphology and size distribution of the synthesized Eu3+-activated Y2O3 phosphor were predominantly dependent upon the type and concentration of flux material and synthetic temperature.  相似文献   

8.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

9.
The luminescence properties of Ce3+ in La3F3[Si3O9] are reported. Excitation and emission bands corresponding to 4f1→5d1 transitions of Ce3+ were identified. The center of gravity of the 5d states lies at remarkable high energy (43.2×103 cm−1) for Ce3+ in a silicate compound. This high value is attributed to the combined oxygen/fluoride coordination of the Ce3+ ion. Emission from the lowest 4f5d level to the 2F5/2 and 2F7/2 levels was found at 32.4×103 and 30.4×103 cm−1. These results are compared with literature data on silicates and fluorides. From the values found for Ce3+, predictions are made for the positions of the 4f5d bands of Pr3+ and Er3+ in La3F3[Si3O9]. For both ions, it is concluded that in this host lattice emission is expected from high lying 4fn energy levels.  相似文献   

10.
This study reports an approach for enhancing the luminescent properties of Y3Al5O12: Ce3+0.07 using an organic compound precursor. The Y3Al5O12: Ce3+0.07 nano-sized phosphors had a relatively uniform particle size, approximately 50-80 nm, when sintered at 1200 °C for 1 h. The photoluminescence results showed the maximum peak intensity when the concentration of Ce3+ ions was 0.07 mol. The results suggest that nano-sized phosphors synthesized from organic compound precursors can be used as alternative efficiency emitting phosphors in the LED applications.  相似文献   

11.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

12.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

13.
Powder phosphors of CaLa1? x Eu x Al3O7, CaLa1? x Ce x Al3O7 and CaLa0.99? x Eu x Ce0.01Al3O7, where x = 0.01, 0.03, 0.05 and 0.07, were prepared by a combustion method. The powders were well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence techniques. Emission spectra of Eu3+-doped powder phosphors showed strong red emission at 613 nm (5D07F2); no concentration quenching was observed. Generally, Ce3+ acts as an efficient sensitizer when doped with other trivalent lanthanide ions. However, interestingly, in the CaLaAl3O7 powder phosphors, the addition of Ce3+ with Eu3+ exhibited an adverse effect–decreased photoluminescence intensity. The reasons for this behavior are discussed.  相似文献   

14.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

15.
A series of phosphors with the composition Y3−xMnxAl5−xSixO12 (x=0, 0.025, 0.050, 0.075, 0.150, 0.225, 0.300) were prepared with solid state reactions. The X-ray powder diffraction analysis of samples shows that the substitution of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance decrease to a certain extent. The emission spectra show that Mn2+ in Y3Al5O12 emits yellow-orange light in a broad band. With the increment of substitution content, the emission intensity of the phosphors increases firstly then decreases subsequently, and the emission peak moves to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of ultraviolet light. The longest afterglow time is 18 min. Thermoluminescence measurement shows that there exist two kinds of traps with different depth of energy level and their depth decreases with the increment of substitution content.  相似文献   

16.
Micro-sized NaY(MoO4)2:Tb3+ phosphors with dendritic morphology was synthesized by a ionic liquid-assisted hydrothermal process. X-ray diffraction (XRD) indicated that the as-prepared product is pure tetragonal phase of NaY(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images showed that the as-prepared NaY(MoO4)2:Tb3+ phosphors have dendritic morphology. The photoluminescent (PL) spectra displayed that the as-prepared NaY(MoO4)2:Tb3+ phosphors show a stronger green emission with main emission wavelength 545 nm corresponding to the 5D47F5 transition of Tb3+ ion, and the optimal Tb3+ doping concentration for obtaining maximum emission intensity was confirmed to be 10 mol%. Based on Van Uitert's and Dexter's models the electric dipole–dipole (D–D) interaction was confirmed to be responsible for the concentration quenching of 5D4 fluorescence of Tb3+ in the NaY(MoO4)2:Tb3+ phosphors. The intrinsic radiative transition lifetime of 5D4 level is found to be 0.703 ms.  相似文献   

17.
RE3+-activated α- and β-CaAl2B2O7 (RE=Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151±2 and 159±3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.  相似文献   

18.
The phosphors in the system Y3−xAl5-yO12:xCe3+,yCr3+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have absorption in the visible light region and give luminescence in the far-red region (∼688 nm), which are suitable for the application in the device of luminescent solar concentrator (LSC). In these phosphors, Ce3+ located at Y3+ site can effectively transfer its absorbed energy to Cr3+ at Al3+ site.  相似文献   

19.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

20.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号