首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Alkylaminopyridinethiones · HCl (1 · HCl) react with bis-trichlorethylmalonate (3) predominantly to 5-alkylamino-4H-thiopyrano [2,3-b]pyridine-4-ones (6). With alcohols in the presence of acids at 25°C6 undergoes an alcoholysis to the corresponding alkyl-3-(2-thioxo-3-pyridyl)propionates (9). On heating in dilute alkali6 is hydrolysed via 4-alkylamino-2-thioxopyridyl-propylketones (11) to the tautomers, 4-hydroxy-2-thioxopyridylpropylketone (12 A) and 2-thioxo-3-(1-hydroxybutenyl)-4-piperidon (12 B), resp. On refluxing with alkali the ethyl-pyridylpropionate9 a is cyclisized to the 1-alkyl-1,6-naphthyridine-2(1H)-one (4 a), but boiling in ethanolic acid hydrolyses9 a via the pyridylpropionic acid10 to 4-alkyl-aminopyridylpropylketone (11 a). The latter can be transformed via the tautomers12 A,B and 2-methylthio-3-pyridylpropylketone (13) to the 4-hydroxy-3-butyrylpyridone (14 A) and its tautomer, 3-(1-hydroxy-butenyl)-piperidine-2,4-diones (14 B) resp. The structure of14 A,B is established by reaction of 4-isopropylamino-2(1H)-pyridone (2) with butanoylchloride to the 4-isopropylamino-3-butyrypyridone (15) and hydrolysis of15 to the tautomers14 A,B.  相似文献   

2.
5-(P-tolyl)-2-[(3-bromo-4-methoxy benzylidene) hydrazino]-thiazole 3, 3-[(3-bromo-4-mehtoxy benzylidine) amino]-2-thiohydantion 5, and 4,6-disubstituted-3-[(3-bromo-4-methoxybenzyliden) amino]-2-thioxo pyrimidines 10 have been prepared via cyclization of 3-bromo-4-methoxy benzaldehyde thiosemicarbazone 2 with 4-methyl phenacyl bromide, ethyl chloroacetate, and dicarbonyl compounds in different conditions. Acetylation of 3 and 5 with acetic anhydride gave the corresponding monoacetyl derivatives 4 and 6, while the acetylation of 5 with acetic anhydride in the presence of fused sodium acetate gave diacetyl derivative 7. Condensation of compound 5 with benzaldehyde in the presence of piperidine yielded the corresponding 3-substituted-5-benzylindene 2-thiohydation 8. Acetylation of compound 8 with acetic anhydride gave the corresponding 1-acetyl-3-substituted-5-benzylidene-2-thiohydantion 9. The mass spectral fragmentation patterns of some prepared compounds are investigated in order to elucidate the structure of the synthesized nitrogen heterocycles.  相似文献   

3.
A multidentate ligand, namely N,N-bis[[1-(phenylmethyl)-1H-1,2,3-triazol-4-yl]methyl]-2-pyridinemethaneamine (L), was synthesized through a click reaction of N,N-di-2-propyn-1-yl-2-pyridinemethanamine with benzyl azide in the presence of CuI catalyst. Treatment of L with CuCl2 or Fe(NCS)2 gave the complexes [CuLCl2]·EtOH (1) and [FeL(NCS)2]·MeCN (2). Single-crystal X-ray studies show that in 1, the Cu(II) center has slightly distorted square pyramidal geometry resulting from the coordination of one pyridinyl nitrogen atom, one tertiary amine nitrogen atom, one triazole nitrogen atom, and two chloride atoms; in 2, the Fe(II) center has distorted octahedral geometry, coordinated by six nitrogen atoms; two each from NCS? groups and triazole rings, one from a pyridinyl ring, and one from tertiary amine nitrogen. In addition, complexes 1 and 2 were characterized by spectroscopic and electrochemical methods.  相似文献   

4.
β-Cyanovinyl-triphenylphosphonium bromide (1) rearranges to (2-cyano-1-phenylethyl)diphenylphosphine oxide (2) on treatment with alkali.1 reacts with NaN3 to 5-triphenyl-phosphonium-1.2.3-triazole-ylide (3) and with cyclopentadiene to (5-cyano-bicyclo[2.2.1]hepten-2-yl-6)triphenylphosphonium bromide (4). Reaction of1 with thioamides leads to (α-cyano-β-amino-β-alkyl)-allyl-triphenylphosphonium hromides (6) together with [(2-alkyl-4-aminothiazolyl)-5-methyl]triphenylphosphonium bromides (5). (2-amino-3-imidazo[1.2—α]pyridinyl) methyl]triphenylphosphonium bromide (7) results from reaction of1 with 2-aminopyridine, [(2-amino-3-imidazo[1.2—α]pyrimidinyl)methyl]triphenylphosphonium bromides (8 and9) from 2-aminopyrimidine and 2-amino-4-6-dimethylpyrimidine resp.  相似文献   

5.
Hydrolysis of the 4-alkyliminothiopyrano[2,3-b]pyridinedioles (5) and 4-alkylaminothiopyrano[2,3-b]pyridones (6) resp. with 10% NaOH gives 5,7-dihydroxy-2H-thiopyrano[2,3-b]pyridine-4(3H)-one (7).7 can be obtained in better yield by reaction of 4-dimethylamino-2(1H)-pyridinethione (8) with bistrichlorphenylethylamlonate (2). Aminolysis of7 affords the two isomeric products5 and6. On treatment with hydrazines,7 reacts only to 4-hydrazonoderivatives5. By heating in bromobenzene5d is cyclisized to 1H-5,1,2,6-thiatriaza-acenaphthylen-7-ol (11). On methylation with methyljodide5,6 and7 furnish the 7-methoxyproducts13,14 and12. By heating in 20% NaOH7 is transformed into the 2-thioxo-3-pyridylmethylketone16 A and its tautomer, 2-mercapto-3-pyridylmethylketone16 B. The structures of5,6 and7 are discussed.  相似文献   

6.
A series of heterocyclic compounds possessing imidazolo[1,2-a]pyridine moiety, namely, ethyl 7-methylimidazolo[1,2-a] pyridine-2-carboxylate L1; 2-(3-nitrophenyl)imidazo[1,2-a]pyridine L2; 3-(imidazo[1,2-a]pyridine-2-yl)aniline L3; 2-phenylimidazolo[1,2-a]pyridine-3carbaldehyde L4; and 2-phenylimidazo[1,2-a]pyridine L5 were synthesized. The in situ generated copper (II), iron (II), and zinc (II) complexes of these compounds (L1–L5) were examined for their catalytic activities and were found to be effective catalysts for the oxidation of catechol to o-quinone with the atmospheric oxygen. The present study reveals that the rate of oxidation depends on four parameters: the nature of the ligand, transition metals, ion salts, and the concentration of the complex. The combination L2(Cu(CH 3 COO) 2 ) gives the highest rate.  相似文献   

7.
Aminolysis of 4-dialkylamino- and 4-alkylamino-2-methylthiothiopyranyliden iodides2 resp. under various reaction conditions leads to assymmetrically or symmetrically substituted 2,4-bisamino- or 2,4-bisdialkylamino- and 2-alkylamino-4-dialkylamino-or 2-dialkylamino-4-alkylamino- or 2-amino-4-dialkylaminodihydrothiopyranylium iodides3, 4, 5, 6 resp. On treatment with alkali 4-alkylamino- and 4-dialkylamino-2-alkylaminothiopyranylium iodides3,4 are hydrolysed to the 2-alkylimino-2H-thiopyranes7. 4-Alkylamino-2-dialkylaminothiopyranylium iodides5 react with alkali to give three products: the two stereoisomeres 2-dialkylamino-4-alkylimino-4H-thiopyranes9 A,B and theN,N-substituted α,β,γ,δ-unsaturated thiocarboxamide10. The hydrolysis of 2,4-bisdialkylaminothiopyranylium iodide6 a leads to the 2-dialkylamino-4H-thiopyran-4-one11 a, the 4-dialkylamino-2H-thiopyrane-2-one12 and theN,N-substituted unsaturated thiocarboxamide10 d. α,β,γ,δ-unsaturated thiocarboxamides10 a-c are formed by the reaction of 2-amino-4-dialkylaminothiopyranylium iodides3 a-c with diluted alkali. By heating with acids10 a-c are cyclisized to the 2-aminothiopyranylium derivates3.  相似文献   

8.
4-Amino-2-alkylimino-2H-thiopyranes (5) and 4-amino-2-alkylaminothiopyranylium halogenides (4) resp. on heating in refluxingDMFA are rearranged in the presence of Na-ethylate to 1-alkyl-4-aminodihydro-2(1H)-pyridinethiones (2). Also 2-methylthiothiopyranylidenammonium iodides (6) and 2-methylthio-4H-thiopyrane-4-one (7) can be transformed into 1-substituted 2(1 H)-pyridinethiones (2) by heating in prim. amines. On treatment with alkali. 4-dimethylaminothiopyranylium iodide (4 a) is transformed into its base5 a and hydrolyzed to8. 5a and8 are rearranged to the pyridinethiones2 a and the tautomers9 A,B. The structure of the rearranged pyridinethiones2 was proved by the1-phenylderivate2 a. Thus 4-methyl-3-penten-2-on reacts with phenylthiourea via the phenylimino-1,3-thiazine (14) to give 3-phenyl-2(1H)pyridinethione (15).15 is transformed by themethylpyrimidine-pyridine-rearrangement to the 1-phenylpyridinethione2 a. The mechanism of theDimroth-reaction of 2-alkylimino-2H-thiopyranes (5) and the stereochemistry of the1-benzyl-6-phenyl-2(1H)-pyridinethiones2 are discussed.  相似文献   

9.
<正>1 General procedure for the preparation of 3-substituted glutaronitriles To a 100 mL flask containing aldehyde(30 mmol) and cyanoacetic acid(10.20 g, 120 mmol) was added 4-methylpiperidine(0.4 mL) and 23 mL N-methylmorpholine. The reaction mixture was warmed to mild reflux for 24 h and then cooled to room temperature and concentrated on a rotary evaporator. The resulting mixture was dissolved in 100  相似文献   

10.
Reactions of bis(acetylacetonato)oxovanadium(IV) with N??-[1-(2-hydroxynaphthyl)ethylidene]-4-nitrobenzohydrazide (H2HNB) and 2-hydroxy-N??-[1-(2-hydroxynaphthyl)ethylidene]benzohydrazide (H2HHB), respectively, product two oxovanadium(V) species with the formulas [VO(OMe)(HNB)]2 (I) and [VO(OMe)(HHB)] (II). The complexes I and II have been characterized by elemental analysis, IR spectra, and single crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/n, a = 8.208(2), b = 14.528(3), c = 16.418(3) ?, ?? = 97.887(3)°, V = 1939.3(7) ?3, Z = 2. The crystal of II is triclinic: space group P $P\bar 1$ a = 8.334(2), b = 10.236(2), c = 11.337(2) ?, ?? = 80.91(3)°, ?? = 75.41(3)°, ?? = 75.63(3)°, V = 902.0(3) ?3, Z = 2. Complex I is a methoxide-bridged dimeric oxovanadium(V) complex, and complex II is a mononuclear oxovanadium(V) complex. The V atom in I is in an octahedral coordination, and that in II is in a square pyramidal coordination.  相似文献   

11.
Methyl-, benzyl- and phenylguanidine (2 b–d) react with 1-phenyl-1,3-butanedione to yield exclusively N2-substituted 4-methyl-6-phenyl-2-pyrimidinamines10 b–d. The formation of isomeric N1-substituted 2(1H)-pyrimidinimines11 or12 cannot be observed. The structural formulae of10 b and c were proved by spectroscopical methods. The structure of the phenylguanidine-phenylbutanedione-condensate was determined by comparison and establishment of the identity of its picrate with an authentical sample of10 d-picrate, which had been synthetized from pyrimidinthione13 (via methylthiopyrimidine16 · HI). Boiling13 with aniline in butanol yields thiodipyrimidine15 (and not10 d).  相似文献   

12.
The fusion of 2-acetamidonicotinic acid witho-toluidine,p-bromoaniline oro-chloroaniline afforded the corresponding 3-aryl-2-methyl-pyrido-[2,3-d]pyrimidin-4(3H)-ones (4), the 8-aza analogs of 3-aryl-2-methyl-4-quinazolinones, alongside 2-aminonicotinic acid. 2-Methyl-3-2(2-methylphenyl)-pyrido[2,3-d]pyrimidin-4(3H)-one (4a), the 8-aza analog of methaqualone, was converted to the 2-substituted styryl derivatives6 by condensation with some aromatic aldehydes and to the tricyclic system, 10-aza-5,6-dihydro-3-hydroxy-5-(2-methylphenyl)-2-substituted-1H-pyrido [1,2-a] quinazoline-1,6-diones (8) by reaction with monosubstituted bis-2,4,6-trichlorophenyl malonates.  相似文献   

13.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

14.
Crotonaldehyde resp. cinnamaldehyde react with guanidiniumchloride to give 2-amino-6-guanidinio-4-methyl-3.4.5.6-tetrahydro-1H-pyrimidiniumdichloride (4 a) resp. 6-hydroxy-4-phenylpyrimidiniumchloride3 b and the 4.6-dihydroxy-2.8-dimethyl (resp. 2.8-diphenyl)octahydropyrimido[1.2?a]pyrimidiniumchlorides6 a and6 b, resp. Action of 2.4-(or 2.6-)xylenol on4 a resp.3 b yields 2-amino-6-[2(or 4)-hydroxy-3.5-dimethylphenyl]-4-methyl-(resp. 4-phenyl)-3.4.5.6-tetrahydro-1H-pyrimidiniumchlorides (8 a resp.8 b or9 a resp.9 b), which are transformed to the zwitterionic compounds10 a–11 b by aqu. NaOH.6 a reacts with 2.4-xylenol to give the triazaoxabenzanthraceniumchlorid12 a·HCl (prove for the structure given for6 a). The chemical properties and the NMR-, UV-, mass- and IR-spectra of the compounds are discussed.  相似文献   

15.
Oxidation of the α- and β-4-phenyl-1,2,4-triazolin-3,5-dione adducts of vitamin D3 (2 and1) withMCPBA yields two diastereomeric mixtures of the (5,10)-(7,8)-dioxiranes3 a,3 b,3 c and4 a,4 b respectively. The corresponding benzoates5 a,5 b,6 a and6 b were prepared and the X-ray crystal structure of5 b was determined. This analysis proved5 b to be the (5R, 1 OS)-(7R, 8R)-dioxirane of the β-resp. (6S)-4-phenyl-1,2,4-triazolin-3,5-dione adduct1 of vitamin D3.  相似文献   

16.
3-Amino-4-(tert-butyl-NNO-azoxy)furoxan (1a) and 4-amino-3-(tert-butyl-NNO-azoxy)-furoxan (1b) and their acetyl derivatives 6a,b were obtained. The equilibria 1a ai 1b and 6a ? 6b were studied. Furoxan 6b can undergo thermal rearrangement into 3-[(tert-butyl-NNO-azoxy)(nitro)methyl]-5-methyl-1,2,4-oxadiazole (7), prolonged heating of which gives N-(2-tert-butyl-5-nitro-1-oxido-2H-1,2,3-triazol-4-yl)acetamide (8). With the transformation 78 as an example, the possibility of participation of the azoxy group in the Boulton-Katritzky rearrangements was demonstrated for the first time.  相似文献   

17.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

18.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

19.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

20.
The three complexes [Zn(pyc)2(H2O)2]·H2O (1), (pipH2)[Cd(pyc)3]·3H2O (2) and [Mg(pyc)2(H2O)2]·H2O (3) (pycH: pyridine-2-carboxylic acid, pip: piperazine) were prepared using a proton transfer compound (pipH2)(pyc)2 and corresponding metallic salts. The characterization was carried out using IR and NMR spectroscopies and single crystal X-ray diffraction. These complexes crystallize in the space group P21/n of the monoclinic system. Cell parameters of the complexes are a?=?9.769(2)?, b?=?5.157(1)?, c?=?14.539(3)? and ???=?90.205(3)° for (1); a?=?8.436(2)?, b?=?14.616(4)?, c?=?19.050(6)? and ???=?96.830(5)° for (2); a?=?11.639(6)?, b?=?8.796(5)?, c?=?14.936(8)? and ???=?107.221(1)° for (3). The crystal structures of (1) and (3) complexes illustrate that the metal ions are coordinated by two pyridine-2-carboxylate but in crystal structure (2) the metal ion is coordinated by three pyridine-2-carboxylate. The protonation constants of the building blocks of the pyridine-2-carboxylic acid?Cpiperazine adduct and the equilibrium constants for the reaction of pyridine-2-carboxylate with piperazine and the stoichiometry and stability of the Zn2+, Cd2+ and Mg2+ complexes with pycH in aqueous solution were accomplished by potentiometric pH titration. The corresponding stability constants, stoichiometry and distribution of the species were determined with program BEST. The solution studies strongly support the self-association and stoichiometry similar to that observed for the isolated crystalline complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号