共查询到20条相似文献,搜索用时 15 毫秒
1.
Leila Afia Rachid Salghi El Houcine Bazzi Abdelkader Zarrouk Belkheir Hammouti Mohamed Bouri Hassan Zarrouk Lahcen Bazzi Lahcen Bammou 《Research on Chemical Intermediates》2012,38(8):1707-1717
Argan hulls extract (AHE) was tested as corrosion inhibitor for mild steel in 1?M HCl. Weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) revealed that inhibiting action increased with increasing concentration of the inhibitor. The highest efficiency 97.3% was obtained at 5?g/L AHE. There was good agreement between gravimetric and electrochemical methods (potentiodynamic polarization and EIS). Results obtained from EIS measurements were analyzed to model the corrosion-inhibition process by use of the appropriate equivalent circuit model; a constant phase element was used. Polarization measurements show also that AHE acts as good mixed inhibitor. AHE is adsorbed on the steel surface in accordance with a Langmuir isotherm adsorption model. 相似文献
2.
1,3,5-tri-p-tolyl-1,3,5-triazene was investigated as a corrosion inhibitor for brass in 0.5 M HCl solution using weight loss, potentiodynamic polarization, linear polarization resistance and electrochemical impedance spectroscopy. Data obtained from these methods showed average inhibition efficiency (76 %) at optimum concentration. The adsorption of the inhibitor on the brass surface follows the Frumkin adsorption isotherm. 相似文献
3.
M. Kaddouri S. Rekkab M. Bouklah B. Hammouti A. Aouniti Z. Kabouche 《Research on Chemical Intermediates》2013,39(8):3649-3667
Inhibition of the corrosion of mild steel in molar hydrochloric acid by two calixarenes, including the effect of inhibitor concentration and temperature, has been investigated by use of weight loss and electrochemical measurements (polarisation and impedance). The results obtained showed that the rate of corrosion decreased substantially in the presence of the compounds, with maximum inhibition of 98.2 % by one of the compounds at a concentration of 10?3 M. The effect of temperature on corrosion behaviour in the presence of different concentrations of the two new calixarenes was studied in the range 45–75 °C. The efficiency of inhibition by the compounds increased with increasing inhibitor concentration and was independent of temperature. Polarisation curves revealed that the calixarenes are mixed-type inhibitors. Adsorption of the inhibitors by the carbon steel surface obeyed the Langmuir adsorption isotherm. Some thermodynamic data for the dissolution and adsorption processes were also determined. 相似文献
4.
L. Herrag M. Bouklah N. S. Patel B. M. Mistry B. Hammouti S. Elkadiri M. Bouachrine 《Research on Chemical Intermediates》2012,38(7):1669-1690
The inhibition of the corrosion of mild steel 1 M HCl solution by some diamine compounds has been investigated in relation to the concentration of the inhibitor as well as the temperature using weight loss and electrochemical measurements. The effect of the temperature on the corrosion behavior with the addition of different concentrations of new diamine compounds (3-[2-(2-cyano-ethylamino)-methylamino]-propionitrile (P1); 3-[2-(2-cyano-ethylamino)-ethylamino]-propionitrile (P2), and 3-[6-(2-cyano-ethylamino)-hexylamino]-propionitrile (P3), respectively, was studied in the temperature range 40–80 °C. Polarization curves reveal that (P1, P2, and P3) are mixed type inhibitors. The inhibition efficiency of organic compounds is temperature independent, but increases with the inhibitor concentration. Adsorption of inhibitor on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined. On the other hand, and in order to determine the relationship between the molecular structure of these compounds and inhibition efficiency, quantum chemical parameters were calculated. The theoretically obtained results were found to be consistent with the experimental data. 相似文献
5.
Potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS), tests, mass loss (ML) and Hydrogen evolutions (HE) methods were used to examine the effects of the newly plant extracted compound (Cystosiera myrica). All these quantities exhibited that the effectiveness of inhibition increase with a rise in inhibitor concentration and with a rise in temperature. Polarization curves displayed that the inhibitor studied was an inhibitor of a mixed kind. Langmuir isotherm was attained for the adsorption of the inhibitor on the Aluminum surface. Thermodynamic parameters were determine and deduced such as activation enthalpy (ΔH*), activation entropy (ΔS*), adsorption equilibrium constant (Kads) and free adsorption energy (Goads) have been measured. UV/visible spectral, Attenuated Total Reflection Infra-Red (ATR-IR) and Atomic Force Microscopy (AFM) tested have observed the effect of this inhibitor on Al surface morphology. All other data approaches were compatible and in line with each other. 相似文献
6.
I. Belfilali A. Chetouani B. Hammouti S. Louhibi A. Aouniti S. S. Al-Deyab 《Research on Chemical Intermediates》2014,40(3):1069-1088
The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10?3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10?3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined. 相似文献
7.
8.
Houria Hamitouche Abdellah Khelifa Amel Kouache Saâd Moulay 《Research on Chemical Intermediates》2014,40(8):2859-2872
Quaternary ammonium cationic surfactants were synthesized from reformate, a liquid mixture of hydrocarbons (aromatics, naphthenes and paraffins), via chloromethylation/quaternization sequences. The petroleum surfactants thus obtained were evaluated as corrosion inhibitors for carbon steel in 1 M HCl, by gravimetry, potentiodynamic polarization and electrochemical impedance spectroscopy. The corrosion inhibiting efficiency was assessed as functions of surfactant concentration. The results showed that the inhibiting efficiency increased with surfactant concentration; its optimal value of 70 % was for a surfactant concentration of 320 mg/L at 25 °C. Potentiodynamic polarization measurements showed that the mixture acts as a mixed type inhibitor. The corrosion inhibiting mechanism is thought to proceed via an adsorption of the surfactant molecules on the steel surface, generating a film and hindering the active sites. Our experimental adsorption data were found to obey the Langmuir adsorption isotherm. SEM images of the treated specimens, revealing the likely formation of a protective film, demonstrated the inhibiting capacity of the petroleum quaternary ammonium surfactants against the carbon steel corrosion. 相似文献
9.
《印度化学会志》2021,98(8):100113
Inhibition of C38 carbon steel corrosion by 4-methyl-3-phenyl-2(3H)-thiazolethione (TO1) and 4-methyl-2-(methylthio)-3- phenylthiazol-3-ium (ST1) in 1 M HCl was investigated by weight loss and electrochemical methods. All of the data obtained reveal that the two compounds act as good inhibitors in this media. At optimized concentration TO1 and ST1 showed the highest inhibition efficiency of 98.8% (2.10−4 M) and 93.86% (10−3 M) respectively. Polarization curves show that inhibitor molecules act as mixed type inhibitors. The impedance study showed that an increase in the concentration of the two inhibitors is accompanied by an increase in polarization resistance and a decrease in double layer capacitance. The Langmuir isotherm very well describes the adsorption of inhibitors to the surface of the corroding metal and the thermodynamic parameters showed that the adsorption of the two compounds was strong and chemical nature. X-ray photoelectron spectroscopy (XPS) confirms and describes the absorption of inhibitors under investigation on the metal surface. 相似文献
10.
Zaid Faska Aicha Bellioua Mohamed Bouklah Lhou Majidi Rachid Fihi Abdelahamid Bouyanzer Belkheir Hammouti 《Monatshefte für Chemie / Chemical Monthly》2008,36(10):1417-1422
The inhibitive action of pulegone and pulegone oxide toward acid corrosion of steel in molar hydrochloric acid was studied
by weight loss measurements, potentiodynamic polarization, and impedance spectroscopy (EIS) methods. The pulegone is extracted
starting from oil of Pennyroyal Mint (Mentha pulegium). The natural compound was found to delay the corrosion rate. The pulegone oxide is prepared by oxidation of pulegone. The
inhibition efficiency was found to increase with the inhibitor content to attain 81 and 75% at 5 g dm−3 for pulegone and pulegone oxide. The increase in temperature leads to an increase in the inhibition efficiency of the natural
compared. 相似文献
11.
M. Mobin Jeenat Aslam Hamad A. Al-Lohedan 《Journal of Dispersion Science and Technology》2016,37(7):1002-1009
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen. 相似文献
12.
K. F. Khaled 《Journal of Solid State Electrochemistry》2009,13(11):1743-1756
Atomistic modelling and simulations are becoming increasingly important in the field of corrosion inhibition. New research
and development efforts and new possibilities for using computational chemistry in studying the behaviour of corrosion inhibitors
on the metal surfaces are introduced. In this study, Monte Carlo simulations technique incorporating molecular mechanics and
molecular dynamics were used to simulate the adsorption of methionine derivatives, namely l-methionine, l-methionine sulphoxide and l-methionine sulphone, on iron (110) surface in 0.5 M sulphuric acid. Adsorption energy as well as hydrogen bond length has
been calculated. Results show that methionine derivatives have a very good inhibitive effect for corrosion of mild steel in
0.5 M sulphuric acid solution. Tafel polarisation studies have shown that methionine derivatives act as mixed-type inhibitors,
and their inhibition mechanism is adsorption assisted by hydrogen bond formation. Impedance results indicate that the values
of the constant phase element tend to decrease with increasing methionine derivatives concentrations due to the increase in
the thickness of the electrical double layer. In addition, both polarisation resistance and inhibition efficiency E
i(%) tend to increase with increasing inhibitors concentrations due to the increase of the surface coverage, i.e., the decrease
of the electrochemical active surface area. The quantum mechanical approach may well be able to foretell molecular structures
that are better for corrosion inhibition. 相似文献
13.
H. B. Ouici O. Benali Y. Harek L. Larabi B. Hammouti A. Guendouzi 《Research on Chemical Intermediates》2013,39(6):2777-2793
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor. 相似文献
14.
The corrosion inhibition mechanism of cerium hydroxycinnamate compounds has been studied and compared as an effective corrosion inhibitor for steel in an aqueous 0.6?M NaCl solution. Surface analysis results showed that the surface of steel coupons exposed to solutions containing cerium hydroxycinnamate compounds has less signs of corrosion attack due to a formation of the protective film, while the surface of mild steel coupons exposed to 0.6?M chloride solution without inhibitor additions was severely corroded due to pitting. Electrochemical results performed a good inhibition performance and information of the formed protective deposit that hinders the electrochemical corrosion reactions with a dominance of anodic inhibition mechanism. The results also indicated that the addition of cerium hydroxycinnamate compounds to 0.6?M NaCl solution could mitigate electrochemical corrosion reactions, reduce protective and double layer CPE magnitudes, and improve protective and charge transfer resistances. Furthermore, cerium 2-hydroxycinnamate showed better efficient corrosion inhibitor in comparison with cerium 4-hydroxycinnamate for steel in aqueous media containing 0.6?M chloride ion. 相似文献
15.
A. Mansri B. Bouras B. Hammouti I. Warad A. Chetouani 《Research on Chemical Intermediates》2013,39(4):1753-1770
The effect of iodide ions on the corrosion inhibition of mild steel in 1 M sulfuric acid in the presence of poly(acrylamide-co-4-vinylpyridine) copolymer abbreviated by (AM-4VP-9) was studied by weight loss measurements and electrochemical techniques (impedance spectroscopy and polarisation curves) at 18 °C. The results obtained showed that the inhibition efficiency increased with increasing copolymer concentration. It was also found that the inhibition efficiency increased with the addition of potassium iodide (KI) to the copolymer. A synergistic effect was observed between the AM-4VP-9 copolymer and KI. On the other hand, it was found that the inhibiting effect of the system (AM-4VP-9 + KI) increased with increasing immersion time. Polarisation curves indicate that (AM-4VP-9) copolymer act as mixed inhibitors. EIS measurements show an increase of the transfer resistance with the inhibitor concentration. 相似文献
16.
M. Znini J. Paolini L. Majidi J.-M. Desjobert J. Costa N. Lahhit A. Bouyanzer 《Research on Chemical Intermediates》2012,38(2):669-683
The essential oil of the aerial parts of Lavandula multifida L., collected in Errachidia region (three samples) in southeast Morocco, was extracted by hydrodistillation and analyzed by GC and GC-MS. The oil was predominated by carvacrol (57.9–59.0%). L. multifida oil was tested as corrosion inhibitor of C38 steel in 0.5 M H2SO4 using weight loss measurements, electrochemical polarization, and EIS methods. The results obtained by measurements of weight loss showed that inhibition efficiency increases with inhibitor concentration to attain 72.2% at 2 g/l of oil at 298 K. Polarization curves revealed that L. multifida oil acts as mixed type inhibitor. The temperature effect on the corrosion behavior of steel in 0.5 M H2SO4 without and with the inhibitor at 2 g/l was studied in the temperature range from 303 and 343 K. The adsorption of inhibitor on the C38 steel surface was found to be a spontaneous process and to obey Langmuir’s adsorption isotherm. The associated activation energy has been determined. 相似文献
17.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules. 相似文献
18.
19.
The effect of Commiphora pedunculata (CP) gum on the inhibition of the corrosion of aluminum alloy AA 3001) in solutions of HCl was investigated using gravimetric and thermometric methods of monitoring corrosion. The results obtained indicated that CP gum is a good adsorption inhibitor for the corrosion of aluminum in solutions of HCl. The inhibition efficiency of CP gum was found to increase with an increase in concentration but to decrease with increasing temperature. The adsorption of CP gum on the surface of aluminum was found to be endothermic, spontaneous and to support the mechanism of physical adsorption. The Langmuir adsorption model has been used to describe the adsorption characteristics of CP gum on aluminum surface. 相似文献
20.
H. B. Ouici O. Benali Y. Harek L. Larabi B. Hammouti A. Guendouzi 《Research on Chemical Intermediates》2013,39(7):3089-3103
Corrosion inhibition by triazole derivatives (n-MMT) on mild steel in 5 % hydrochloric acid (HCl) solutions has been investigated by weight loss and electrochemical methods. The results obtained revealed that these compounds performed excellently as corrosion inhibitors for mild steel in HCl solution. Potentiodynamic polarization studies showed that they suppressed both the anodic and cathodic processes and inhibited the corrosion of mild steel by blocking the active site of the metal. The effect of temperature on the corrosion behavior of mild steel in 5 % HCl with the addition of different concentrations of the inhibitors was studied in the temperature range from 303 to 333 K. The associated activation corrosion and free adsorption energies were determined. The adsorption of these compounds on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of molecular structure on the inhibition efficiency has been investigated by quantum chemical calculations. The electronic properties of inhibitors were calculated and are discussed. 相似文献