首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Periodic synchronous regimes of motion are investigated in symmetric homogeneous system of coupled essentially nonlinear oscillators with time delays. Such regimes are similar to nonlinear normal modes (NNMs), known for corresponding conservative system without delays, and can be found analytically. Unlikely the conservative counterpart, the system possesses “oval” modes with constant phase shift between the oscillators, in addition to symmetric/antisymmetric and localized regimes of motion. Numeric simulation demonstrates that the “oval” modes may be attractors of the phase flow. These attractors are particular case of phase-locked solutions, rather ubiquitous in the system under investigation.  相似文献   

2.
一种用于非线性振动系统的模态分析方法   总被引:3,自引:0,他引:3  
本文提出了一种用于非线性振动系统的模态分析方法,将求解非线性系统模态的问题化为求解非线性特征值、特征向量的问题,利用模态研究系统的响应,文中分析了非线性保守系统、非线性自治系统和非线性非自治系统的线性模态,导出了三个模态包含原理。  相似文献   

3.
The nonlinear dynamics of ships and floating offshore platforms hasattracted much attention over the last several years. However the topicof multiple-degrees-of-freedom systems has almost been completely ignoredwith very few exceptions. This is probably due to the complexity ofanalyzing strongly nonlinear and coupled systems. It turns out thatcoupling may be particularly important for certain critical dynamicssuch as the dynamics of a floating offshore platform about its diagonalaxis. In a previous work, Kota et al. [1] applied the recently developed nonlinearnormal mode technique to analyze the coupled nonlinear dynamics of afloating offshore platform. Although this previous work was restrictedto unforced and undamped systems, in this work a comparison of the twoalternative nonlinear normal mode analysis techniques was completed.Considering the relative practical importance of damping versus externalforcing for this system, in the present work, we utilize just one of thetwo major techniques available [2] to analyze damped multiple-degrees-of-freedom nonlinear dynamics. Specifically, we investigate the effect ofnonlinearity, and non-proportionate damping. Our results show that thistechnique allows one to simply consider the effect of nonlinearity andgeneral damping on the resulting normal modes. This technique isparticularly powerful because it allows one to visualize the modes in ageometric fashion using the invariant manifold concept from dynamicalsystems.  相似文献   

4.
非线性模态的分类和新的求解方法   总被引:11,自引:3,他引:11  
引入不可分偶数维不变流形的概念来定义非线性模态.在此基础上,揭示出了一种新的模态——耦合非线性模态,并对实际系统中各种可能的模态进行了分类.这种分类可能是新的构筑非线性模态理论的框架.用此方法构造非线性模态,得到的模态振子具有范式的形式,形式最简、却能反映原系统在平衡点附近的主要动力学行为,且易于得到非线性频率及非线性稳定性等方面的信息.不仅适用于分析一般的多自由度系统,还可用于分析奇数维系统;不仅可构造内共振系统的非耦合模态,还可用于构造内共振耦合模态.从掌握的资料看,以前的方法还不能解决上述所有问题  相似文献   

5.
This paper describes a methodology for developing reduced-order dynamic models of structural systems that are composed of an assembly of nonlinear component structures. The approach is a nonlinear extension of the fixed-interface component mode synthesis (CMS) technique developed for linear structures by Hurty and modified by Craig and Bampton. Specifically, the case of nonlinear substructures is handled by using fixed-interface nonlinear normal modes (NNMs). These normal modes are constructed for the various substructures using an invariant manifold approach, and are then coupled through the traditional linear constraint modes (i.e., the static deformation shapes produced by unit interface displacements). A class of systems is used to demonstrate the concept and show the effectiveness of the proposed procedure. Simulation results show that the reduced-order model (ROM) obtained from the proposed procedure outperforms the ROM obtained from the classical fixed-interface linear CMS approach as applied to a nonlinear structure. The proposed method is readily applicable to large-scale nonlinear structural systems that are based on finite-element models.  相似文献   

6.
Zhu  W. Q.  Ying  Z. G.  Soong  T. T. 《Nonlinear dynamics》2001,24(1):31-51
A strategy for optimal nonlinear feedback control of randomlyexcited structural systems is proposed based on the stochastic averagingmethod for quasi-Hamiltonian systems and the stochastic dynamicprogramming principle. A randomly excited structural system isformulated as a quasi-Hamiltonian system and the control forces aredivided into conservative and dissipative parts. The conservative partsare designed to change the integrability and resonance of the associatedHamiltonian system and the energy distribution among the controlledsystem. After the conservative parts are determined, the system responseis reduced to a controlled diffusion process by using the stochasticaveraging method. The dissipative parts of control forces are thenobtained from solving the stochastic dynamic programming equation. Boththe responses of uncontrolled and controlled structural systems can bepredicted analytically. Numerical results for a controlled andstochastically excited Duffing oscillator and a two-degree-of-freedomsystem with linear springs and linear and nonlinear dampings, show thatthe proposed control strategy is very effective and efficient.  相似文献   

7.
Ahi  Mahdi  Ahmadian  Hamid 《Nonlinear dynamics》2022,110(1):95-116
Nonlinear Dynamics - Recently, some researchers have suggested using frequency–energy representations of nonlinear normal modes (NNMs) for nonlinear model updating of conservative systems....  相似文献   

8.
多自由度内共振系统非线性模态的分岔特性   总被引:5,自引:0,他引:5  
利用多尺度法构造了一个立方非线性1:3内共振系统的内共振非线性模态(NonlinearNormal Modes associated with internal resonance).研究表明,内共振非线性系统除存在单模态运动外还存在耦合模态运动.耦合内共振模态具有分岔特性.利用奇异性理论对模态分岔方程进行分析发现此类系统的模态存在叉形点分岔和滞后点分岔这两种典型的分岔模式.  相似文献   

9.
The dynamics of weakly coupled, nonlinear cyclic assemblies are investigated in the presence of weak structural mistuning. The method of multiple scales is used to obtain a set of nonlinear algebraic equations which govern the steady-state, synchronous (modal-like) motions for the structures. Considering a degenerate assembly of uncoupled oscillators, spatially localized modes are computed corresponding to motions during which vibrational energy is spatially confined to one oscillator (strong localization) or a subset of oscillators (weak localization). In the limit of weak substructural coupling, asymptotic solutions are obtained which correspond to (i) spatially extended, (ii) strongly localized, and (iii) weakly localized modes for fully coupled systems. Throughout the analysis, the influence of structural mistunings on the resulting solutions are discussed. Additionally, numerical solutions (including linearized stability characteristics) are obtained for prototypical two- and three-degree-of-freedom (DoF) systems with various structural mistunings. The numerical results provide insight into the strong influence of structural irregularities on the dynamical behavior of nonlinear cyclic systems, and demonstrate that the combined influences of structural mistunings and nonlinearities do not lead to uniform improvement of motion confinement characteristics.  相似文献   

10.
The resonance dynamics of a dissipative spring-mass and of a dissipative spring-pendulum system is studied. Internal resonance case is considered for the first system; both external resonances and simultaneous external and internal resonance are studied for the second one. Analysis of the systems resonance behavior is made on the base of the concept of nonlinear normal vibration modes (NNMs) by Kauderer and Rosenberg, which is generalized for dissipative systems. The multiple time scales method under resonance conditions is applied. The resulting equations are reduced to a system with respect to the system energy, arctangent of the amplitudes ratio and the difference of phases of required solution in the resonance vicinity. Equilibrium positions of the reduced system correspond to nonlinear normal modes; in energy dissipation case they are quasi-equilibriums. Analysis of the equilibrium states of the reduced system permits to investigate stability of nonlinear normal modes in the resonance vicinity and to describe transfer from unstable vibration mode to stable one. New vibration regimes, which are called transient nonlinear normal modes (TNNMs) are obtained. These regimes take place only for some particular levels of the system energy. In the vicinity of values of time, corresponding to these energy levels, the TTNM attract other system motions. Then, when the energy decreases, the transient modes vanish, and the system motions tend to another nonlinear normal mode, which is stable in the resonance vicinity. The reliability of the obtained analytical results is confirmed by numerical and numerical-analytical simulations.  相似文献   

11.
This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.  相似文献   

12.
Linear vibration absorbers are a valuable tool used to suppressvibrations due to harmonic excitation in structural systems. Whilelimited evaluation of the performance of nonlinear vibrationabsorbers for nonlinear structures exists in the literature forsingle mode structures, none exists for multi-mode structures.Consequently, nonlinear multiple-degrees-of-freedom structures areevaluated. The theory of nonlinear normal modes is extended toinclude consideration of modal damping, excitation and smalllinear coupling, allowing estimation of vibration absorberperformance. The dynamics of the N +1-degrees-of-freedom system areshown to reduce to those of a two-degrees-of-freedom system on afour-dimensional nonlinear modal manifold, thereby simplifying theanalysis. Quantitative agreement is shown to require a higher-order model which is recommended for future investigation.  相似文献   

13.
This paper investigates nonlinear normal modes and their superposition in a two degrees of freedom asymmetric system with cubic nonlinearities for all nonsingular conditions, based on the invariant subspace in nonlinear normal modes for the nonlinear equations of motion. The focus of attention is to consider relation between the validity of superposition and the static bifurcation of modal dynamics. The numerical results show that the validity has something to do not only with its local restriction, but also with the static bifurcation of modal dynamics. Project Supported by the National Natural Science Foundation and PSF of China  相似文献   

14.
随机激励的耗散的哈密尔顿系统的平稳解   总被引:2,自引:0,他引:2  
朱位秋 《力学学报》1993,25(6):676-684
本文首先为一般的随机激励的耗散的哈密尔顿系统得到精确的平稳解,然后在此基础上为类似而更为一般的系统发展了等效非线性系统法  相似文献   

15.
随机激励的耗散的哈密尔顿系统的平稳解   总被引:1,自引:0,他引:1  
本文首先为一般的随机激励的耗散的哈密尔顿系统得到精确的平稳解,然后在此基础上为类似而更为一般的系统发展了等效非线性系统法。  相似文献   

16.
A nonlinear system identification methodology based on the principle of harmonic balance and bifurcation theory techniques like center manifold analysis and normal form reduction, is presented for multi-degree-of-freedom systems. The methodology, called Bifurcation Theory System IDentification, (BiTSID), is a general procedure for any nonlinear system that exhibits periodic limit cycle response and can be used to capture the bifurcation behavior of the nonlinear systems. The BiTSID methodology is demonstrated on an experimental system single-degree-of-freedom system that deals with self-excited motions of a fluid-structure system with a sub-critical Hopf bifurcation. It is shown that BiTSID performs excellently in capturing the stable and unstable limit cycles within the experimental regime. Its performance outside the experimental regime is also studied. The application of BiTSID to experimental multi-degree-of-freedom systems has also been very successful. However in this study only the results of the single-degree-of-freedom system are presented.  相似文献   

17.
The paper proposes a method to analyze forced vibrations in nonlinear systems. The procedure combines Rauscher’s method and Pierre–Shaw nonlinear modes. Results from an analysis of the forced vibrations of a shallow arch are presented as an example Translated from Prikladnaya Mekhanika, Vol. 44, No. 12, pp. 102–110, December 2008.  相似文献   

18.
The scaling of the solution of coupled conservative weakly nonlinear oscillators is demonstrated and analyzed through evaluating the normal modes and their bifurcation with an equivalent linearization technique and calculating the general solutions with a method of multiple seales. The scaling law for coupled Duffing oscillators is that the coupling intensity should be proportional to the total energy of the system.Present address: Department of Chemistry and Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.  相似文献   

19.
This paper considers normal vibrations with curvilinear trajectories in a configuration space of systems which are close to systems permitting rectilinear normal modes of vibration. Analysis of trajectories of normal vibrations in the configuration space is used.  相似文献   

20.
Relative equilibria, i.e., steady motions associated to specified group motions, are an important class of steady motions of Hamiltonian and Lagrangian systems with symmetry. Relative equilibria can be identified by means of a variational principle on the tangent space of the configuration manifold. We show that relative equilibria can also be found by means of a variational principle on the configuration manifold itself. Formal stability of a relative equilibrium corresponds to definiteness of the second variation of the energymomentum functional, which is a specified combination of the total energy and the group momentum, on an appropriate subspace. We decompose this subspace into three subspaces by means of the Legendre transformation and the group action and show that the second variation block diagonalizes with respect to these subspaces. The techniques employed here are a generalization of the reduced energy-momentum method of Simoet al. (1991), which applies only to simple mechanical systems, to a more general class of conservative systems, including systems on which the symmetry group does not act freely. We briefly discuss a generalization of a result due to Patrick (1990) that provides conditions under which formal stability implies nonlinear orbital stability. Several simple examples, including natural mechanical systems, are used to illustrate the block diagonalization procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号