首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione (GSH) undergoes facile electron transfer with vanadium(V)-substituted Keggin-type heteropolyoxometalates, [ \textPV\textV \textW 1 1 \textO 4 0 ] 4 - [ {\text{PV}}^{\text{V}} {\text{W}}_{ 1 1} {\text{O}}_{ 4 0} ]^{{ 4 { - }}} (HPA1) and [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ] 5 - [ {\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} ]^{{ 5 { - }}} (HPA2). The kinetics of these reactions have been investigated in phthalate buffers spectrophotometrically at 25 °C in aqueous medium. One mole of HPA1 consumes one mole of GSH and the product is the one-electron reduced heteropoly blue, [ \textPV\textIV \textW 1 1 \textO 40 ] 5- [ {\text{PV}}^{\text{IV}} {\text{W}}_{ 1 1} {\text{O}}_{ 40} ]^{ 5- } . But in the GSH-HPA2 reaction, one mole of HPA2 consumes two moles of GSH and gives the two-electron reduced heteropoly blue [ \textPV\textIV \textV\textIV \textW 10 \textO 40 ] 7- [ {\text{PV}}^{\text{IV}} {\text{V}}^{\text{IV}} {\text{W}}_{ 10} {\text{O}}_{ 40} ]^{ 7- } . Both reactions show overall third-order kinetics. At constant pH, the order with respect to both [HPA] species is one and order with respect to [GSH] is two. At constant [GSH], the rate shows inverse dependence on [H+], suggesting participation of the deprotonated thiol group of GSH in the reaction. A suitable mechanism has been proposed and a rate law for the title reaction is derived. The antimicrobial activities of HPA1, HPA2 and [ \textPV\textV \textV\textV \textV\textV \textW 9 \textO 4 0 ] 6 - [ {\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 9} {\text{O}}_{ 4 0} ]^{{ 6 { - }}} (HPA3) against MRSA were tested in vitro in combination with vancomycin and penicillin G. The HPAs sensitize MRSA towards penicillin G.  相似文献   

2.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

3.
Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) = - ( 4 10.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) = - ( 2 80.5 ±1. 9)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . From the obtained \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crII ) = - ( 40 8.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crIII ) = - ( 40 7.4 ±1. 3)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . The proposed \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide, \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textON,\text g ) = - ( 10 9. 2 ± 2. 2)\text kJ  \textmol - 1 , \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the \Updelta\textf H\textm\texto \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} (C8H9O2N, g) value obtained in this study and the remaining experimental data used in the \Updelta\textr H\textm\texto \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.  相似文献   

4.
l-cysteine undergoes facile electron transfer with heteropoly 10-tungstodivanadophosphate, [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ]5 - , \left[ {{\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} } \right]^{5 - } , at ambient temperature in aqueous acid medium. The stoichiometric ratio of [cysteine]/[oxidant] is 2.0. The products of the reaction are cystine and two electron-reduced heteropoly blue, [PVIVVIVW10O40]7−. The rates of the electron transfer reaction were measured spectrophotometrically in acetate–acetic acid buffers at 25 °C. The orders of the reaction with respect to both [cysteine] and [oxidant] are unity, and the reaction exhibits simple second-order kinetics at constant pH. The pH-rate profile indicates the participation of deprotonated cysteine in the reaction. The reaction proceeds through an outer-sphere mechanism. For the dianion SCH2CH(NH3 +)COO, the rate constant for the cross electron transfer reaction is 96 M−1s−1 at 25 °C. The self-exchange rate constant for the - \textSCH2 \textCH( \textNH3 + )\textCOO - \mathord
/ \vphantom - \textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } \mathord{\left/ {\vphantom {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }} couple was evaluated using the Rehm–Weller relationship.  相似文献   

5.
Extraction of microamounts of cesium by a nitrobenzene solution of ammonium dicarbollylcobaltate ( \textNH 4 + \textB - ) ( {{\text{NH}}_{ 4}^{ + } {\text{B}}^{ - } }) and thallium dicarbollylcobaltate ( \textTl + \textB - ) ( {{\text{Tl}}^{ + } {\text{B}}^{ - } }) in the presence of 2,3-naphtho-15-crown-5 (N15C5, L) has been investigated. The equilibrium data have been explained assuming that the complexes \textML + {\text{ML}}^{ + } and \textML 2 + {\text{ML}}_{ 2}^{ + } ( \textM + = \textNH4 + ,\textTl + ,\textCs + ) ( {{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } ,{\text{Cs}}^{ + } } ) are present in the organic phase. The stability constants of the \textML + {\text{ML}}^{ + } and \textML2 + {\text{ML}}_{2}^{ + } species ( \textM + = \textNH4 + ,\textTl + ) ( {{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } }) in nitrobenzene saturated with water have been determined. It was found that the stability of the complex cations \textML + {\text{ML}}^{ + } and \textML2 + {\text{ML}}_{2}^{ + } (\textM + = \textNH4 + ,\textTl + ,\textCs + ;  \textL = \textN15\textC5) ({{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } ,{\text{Cs}}^{ + } ;\;{\text{L}} = {\text{N}}15{\text{C}}5}) in the mentioned medium increases in the \textCs +   <  \textNH4 +   <  \textTl + {\text{Cs}}^{ + }\,<\, {\text{NH}}_{4}^{ + }\,<\,{\text{Tl}}^{ + } order.  相似文献   

6.
The study elementarily investigated the effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. Four single cells were fabricated with different cathode structures, and the total cathode thickness was 15, 55, 85, and 85 μm for cell-A, cell-B, cell-C, and cell-D, respectively. The cell-A, cell-B, and cell-D included only one cathode layer, which was fabricated by ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} (LBSM) electrode material. The cathode of the cell-C was composed of a ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d - ( \textBi0.7 \textEr0.3 \textO1.5 ) \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} - \left( {{\text{Bi}}_{0.7} {\text{Er}}_{0.3} {\text{O}}_{1.5} } \right) (LBSM–ESB) cathode functional layer and a LBSM cathode layer. Different cathode structures leaded to dissimilar polarization character for the four cells. At 750°C, the total polarization resistance (R p) of the cell-A was 1.11, 0.41 and 0.53 Ω cm2 at the current of 0, 400, and 800 mA, respectively, and that of the cell-B was 1.10, 0.39, and 0.23 Ω cm2 at the current of 0, 400, and 800 mA, respectively. For cell-C and cell-D, their polarization character was similar to that of the cell-B and R p also decreased with the increase of the current. The maximum power density was 0.81, 1.01, 0.79, and 0.43 W cm−2 at 750°C for cell-D, cell-C, cell-B, and cell-A, respectively. The results demonstrated that cathode structures evidently influenced the electrochemical performance of anode-supported solid oxide fuel cells.  相似文献   

7.
Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of diphenyl-N,N-dibutylcarbamoylmethyl phosphine oxide (DPDBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL+, \textHL2 + {\text{HL}}_{2}^{ + } , CaL2+, \textCaL 2 2 + {\text{CaL}}_{ 2}^{{ 2 { + }}} , \textCaL 3 2 + {\text{CaL}}_{ 3}^{{ 2 { + }}} , SrL2+, \textSrL 2 2 + {\text{SrL}}_{ 2}^{{ 2 { + }}} , \textSrL 3 2 + {\text{SrL}}_{ 3}^{{ 2 { + }}} and \textSrL 4 2 + {\text{SrL}}_{ 4}^{{ 2 { + }}} are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability constants of the complexes CaL2+, \textCaL 2 2 + {\text{CaL}}_{ 2}^{{ 2 { + }}} and \textCaL 3 2 + {\text{CaL}}_{ 3}^{{ 2 { + }}} , where L is DPDBCMPO, are somewhat higher than those of the corresponding complex species SrL2+, \textSrL 2 2 + {\text{SrL}}_{ 2}^{{ 2 { + }}} and \textSrL 3 2 + {\text{SrL}}_{ 3}^{{ 2 { + }}} .  相似文献   

8.
Theoretical study of several para-substituted O-nitrosyl carboxylate compounds has been performed using density functional B3LYP method with 6-31G(d,p) basis set. Geometries obtained from DFT calculation were used to perform natural bond orbital analysis. It is noted that weakness in the O3–N2 sigma bond is due to $ n_{{{\text{O}}_{1} }} \to \sigma_{{{\text{O}}_{3} - {\text{N}}_{2} }}^{*} Theoretical study of several para-substituted O-nitrosyl carboxylate compounds has been performed using density functional B3LYP method with 6-31G(d,p) basis set. Geometries obtained from DFT calculation were used to perform natural bond orbital analysis. It is noted that weakness in the O3–N2 sigma bond is due to n\textO1 ? s\textO3 - \textN2 * n_{{{\text{O}}_{1} }} \to \sigma_{{{\text{O}}_{3} - {\text{N}}_{2} }}^{*} delocalization and is responsible for the longer O3–N2 bond lengths in para-substituted O-nitrosyl carboxylate compounds. It is also noted that decreased occupancy of the localized s\textO3 -\textN2 \sigma_{{{\text{O}}_{3} --{\text{N}}_{2} }} orbital in the idealized Lewis structure, or increased occupancy of s\textO3 - \textN2 * \sigma_{{{\text{O}}_{3} - {\text{N}}_{2} }}^{*} of the non-Lewis orbital, and their subsequent impact on molecular stability and geometry (bond lengths) are related with the resulting p character of the corresponding sulfur natural hybrid orbital of s\textO3 -\textN2 \sigma_{{{\text{O}}_{3} --{\text{N}}_{2} }} bond orbital. In addition, the charge transfer energy decreases with the increase of the Hammett constants of substituent groups and the partial charges distribution on the skeletal atoms may approve anticipating that the electrostatic repulsion or attraction between atoms can give a significant contribution to the intra- and intermolecular interaction.  相似文献   

9.
Polypyrrole polymer films doped with the large, immobile dodecylbenzene sulfonate anions operating in alkali halide aqueous electrolytes has been used as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance technique was used to determine the amount of charge inserted and the total mass change during the reduction process in a polypyrrole film. From these values, the number of water molecules accompanying each cation was evaluated. The number of water molecules entering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primary membrane hydration number of the cation involved in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are:
\textL\texti + : 5.5 - 5.3;\text N\texta + : 4.5 - 4.3; \textK + : 2.3 - 2.5;\text R\textb + : 0.9 - 0.8 ;\text C\texts + : ~ 0;\text M\textg2 + :10.4 - 10.6;\textC\texta2 + :7.9 - 8.1;\textS\textr2 + :5.7 - 6.1;\textB\texta2 + :3.0 - 3.1;\textY3 + :13.6 - 13.8 ;\textL\texta3 + :9.0 - 9.1. {\text{L}}{{\text{i}}^{ + }}:{ 5}.{5} - {5}.{3};{\text{ N}}{{\text{a}}^{ + }}:{ 4}.{5} - {4}.{3};{ }{{\text{K}}^{ + }}:{ 2}.{3} - {2}.{5};{\text{ R}}{{\text{b}}^{ + }}:{ }0.{9} - 0.{8 };{\text{ C}}{{\text{s}}^{ + }}:{ }\sim 0;{\text{ M}}{{\text{g}}^{{{2} + }}}:{1}0.{4} - {1}0.{6};{\text{C}}{{\text{a}}^{{{2} + }}}:{7}.{9} - {8}.{1};{\text{S}}{{\text{r}}^{{{2} + }}}:{5}.{7} - {6}.{1};{\text{B}}{{\text{a}}^{{{2} + }}}:{3}.0 - {3}.{1};{{\text{Y}}^{{{3} + }}}:{13}.{6 } - { 13}.{8 };{\text{L}}{{\text{a}}^{{{3} + }}}:{9}.0 - {9}.{1}.  相似文献   

10.
Bis(2,4,6-tripyridyl 1,3,5-triazine)iron(II), \textFe(\textTPTZ) 2 2 + {\text{Fe(\text{TPTZ})}}_{ 2}^{{ 2 { + }}} reacts with 3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonicacid)-1,2,4-triazine (PDTS) and 3-(4-(4-phenylsulfonicacid)-2-pyridyl)-5,6-bis(4-phenylsulfonic-acid)-1,2,4-triazine (PPDTS) to give \textFe(PDTS) 3 4- {\text{Fe(PDTS)}}_{ 3}^{ 4- } and \textFe(PPDTS) 3 7- {\text{Fe(PPDTS)}}_{ 3}^{ 7- } respectively. Both of these substitution reactions are fast and their kinetics were monitored by stopped-flow spectrophotometry in acetate buffers in the pH range of 3.6–5.6 at 25–45 °C. Both reactions are first order in \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} and triazine, and pH has negligible effect on the rate. The kinetic data suggest that these reactions occur in an associative path and a mechanism is proposed considering both protonated and unprotonated forms of PDTS and PPDTS are very similar in reactivity. The kinetic and activation parameters have been evaluated.  相似文献   

11.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

12.
The 17O-NMR spin-lattice relaxation times (T 1) of water molecules in aqueous solutions of n-alkylsulfonate (C1 to C6) and arylsulfonic anions were determined as a function of concentration at 298 K. Values of the dynamic hydration number, (S-) = nh - (tc- /tc0 - 1)(\mathrm{S}^{-}) = n_{\mathrm{h}}^{ -} (\tau_{\mathrm{c}}^{-} /\tau_{\mathrm{c}}^{0} - 1), were determined from the concentration dependence of T 1. The ratios (tc -/tc0\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0}) of the rotational correlation times (tc -\tau_{\mathrm{c}}^{ -} ) of the water molecules around each sulfonate anion in the aqueous solutions to the rotational correlation time of pure water (tc0\tau_{\mathrm{c}}^{0}) were obtained from the n DHN(S) and the hydration number (nh -n_{\mathrm{h}}^{ -} ) results, which was calculated from the water accessible surface area (ASA) of the solute molecule. The tc -/tc0\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0} values for alkylsulfonate anions increase with increasing ASA in the homologous-series range of C1 to C4, but then become approximately constant. This result shows that the water structures of hydrophobic hydration near large size alkyl groups are less ordered. The rotational motions of water molecules around an aromatic group are faster than those around an n-alkyl group with the same ASA. That is, the number of water–water hydrogen bonds in the hydration water of aromatic groups is smaller in comparison with the hydration water of an n-alkyl group having the same ASA. Hydrophobic hydration is strongly disturbed by a sulfonate group, which acts as a water structure breaker. The disturbance effect decreases in the following order: $\mbox{--} \mathrm{SO}_{3}^{-} > \mbox{--} \mathrm{NH}_{3}^{ +} > \mathrm{OH}> \mathrm{NH}_{2}$\mbox{--} \mathrm{SO}_{3}^{-} > \mbox{--} \mathrm{NH}_{3}^{ +} > \mathrm{OH}> \mathrm{NH}_{2}. The partial molar volumes and viscosity B V coefficients for alkylsulfonate anions are linearly dependent on their n DHN(S) values.  相似文献   

13.
[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with “GaI” to give a series of compounds that feature Ga–Ga bonds, namely [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaI3, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGaI2GaI2( \textHpz\textMe2 {\text{Hpz}}^{{{\text{Me}}_{2} }} ) and [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga(GaI2)2Ga[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ], in addition to the cationic, mononuclear Ga(III) complex {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}+. Likewise, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with (HGaCl2) 2 and Ga[GaCl4] to give [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaCl3, {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}[GaCl4], and {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGa[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]}[GaCl4]2. The adduct [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 may be obtained via treatment of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]K with “GaI” followed by addition of B(C6F5)3. Comparison of the deviation from planarity of the GaY3 ligands in [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaY3 (Y = Cl, I) and [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→GaY3, as evaluated by the sum of the Y–Ga–Y bond angles, Σ(Y–Ga–Y), indicates that the [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga moiety is a marginally better donor than [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga. In contrast, the displacement from planarity for the B(C6F5)3 ligand of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 is greater than that of [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→B(C6F5)3, an observation that is interpreted in terms of interligand steric interactions in the former complex compressing the C–B–C bond angles.  相似文献   

14.
Hybrid multilayer films composed of poly(ethylenimine) and the Keggin-type polyoxometalates [ SiW11O39 ]8 - ( SiW11 ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{{\hbox{O}}_{{39}}}} \right]^{{8} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}} \right) and [ SiW11CoII( H2O )O39 ]6 - ( SiW11Co ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{C}}{{\hbox{o}}^{\rm{II}}}\left( {{{\hbox{H}}_2}{\hbox{O}}} \right){{\hbox{O}}_{{39}}}} \right]^{{6} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{Co}}} \right) were prepared on glassy carbon electrodes by layer-by-layer self-assembly, and were characterized by cyclic voltammetry and scanning electron microscopy. UV-vis absorption spectroscopy of films deposited on quartz slides was used to monitor film growth, showing that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of bilayers. Cyclic voltammetry indicates that the electrochemical properties of the polyoxometalates are maintained in the multilayer films, and that the first tungsten reduction process for immobilized SiW11 and SiW11Co is a surface-confined process. Electron transfer to [ Fe( CN )6 ]3 - /4 - {\left[ {{\hbox{Fe}}{{\left( {\hbox{CN}} \right)}_6}} \right]^{{3} - /{4} - }} and [ Ru( NH3 )6 ]3 + /2 + {\left[ {{\hbox{Ru}}{{\left( {{\hbox{N}}{{\hbox{H}}_3}} \right)}_6}} \right]^{{3} + /{2} + }} as electrochemical probes was also investigated by cyclic voltammetry. The (PEI/SiW11Co)n multilayer films showed excellent electrocatalytic reduction properties towards nitrite, bromate and iodate.  相似文献   

15.
In the present work temperature dependence of heat capacity of rubidium niobium tungsten oxide has been measured first in the range from 7 to 395 K and then between 390 and 650 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity ^ (T), C_{\text{p}}^{\text{o}} (T), enthalpy H\texto (T) - H\texto (0) H^{\text{o}} ({\rm T}) - H^{\text{o}} (0) , entropy S\texto (T) - S\texto ( 0 ) S^{\text{o}} (T) - S^{\text{o}} \left( 0 \right) , and Gibbs function G\texto (T) - H\texto (0) G^{{^{\text{o}} }} ({\rm T}) - H^{{^{\text{o}} }} (0) , for the range from T→0 to 650 K. The high-temperature X-ray diffraction and the differential scanning calorimetry were used for the determination of temperature and decomposition products of RbNbWO6.  相似文献   

16.
In this article, a thermodynamic study on the interaction of Jack bean urease, JBU, with \textHg 2+ {\text{Hg}}^{ 2+ } and \textAg + {\text{Ag}}^{ + } ions were studied by isothermal titration calorimetry (ITC) at 300 and 310 K in 30 mM Tris buffer solution, pH 7.0. The heats of \textJBU + \textHg 2+ {\text{JBU}} + {\text{Hg}}^{ 2+ } and \textJBU + \textAg + {\text{JBU}} + {\text{Ag}}^{ + } interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are a set of 12 identical and non-cooperative sites for \textHg 2+ {\text{Hg}}^{ 2+ } and \textAg + {\text{Ag}}^{ + } ions. The binding of \textHg 2+ {\text{Hg}}^{ 2+ } and \textAg + {\text{Ag}}^{ + } ions with JBU are exothermic with association equilibrium constants of 5415.65 and 4368.15 for \textAg + {\text{Ag}}^{ + } and 2389 and 2087 M - 1 M^{ - 1} for \textHg 2+ {\text{Hg}}^{ 2+ } at 300 and 310 K, respectively.  相似文献   

17.
An in situ spectroelectrochemical study was carried out on the formation of 3-methylthiophene oligomer radical-cations (monomer, dimer, and trimer) and the 3-methylthiophene dihydrocation in the solution bulk during the electrochemical synthesis of a poly-3-methylthiophene coating on a conducting glass electrode. A dependence of the concentration of products formed on the cation radius (Li+ and Na+) and nature of the anion ( \textClO4- {\text{ClO}}_4^{-} and \textBF4- {\text{BF}}_4^{-} ) of the base electrolyte was established. The conversion of charged components into neutral dimers and tetramers of 3-methylthiophene after termination of the anodic polymerization was shown in accord with reported results on the electrochemical polymerization of thiophenes.  相似文献   

18.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

19.
Electrospray ionization coupled with low energy collision induced dissociation (CID) in an ion trap mass spectrometer was used to examine the fragmentation patterns of the [M + Na]+ of eight pairs of heptapeptides containing α- or β-Asp residues in second and sixth amino acid positions, respectively. Selective cleavages at the peptide backbone C-terminal to two Asp residues were observed, which generated a series of C-terminal y5 ions and N-terminal b6 ions. Two typical ions: [ \texty5 + \textNa-\textH ] + {\left[ {{{\text{y}}_{{5}}} + {\text{Na}}-{\text{H}}} \right]^{ + }} and [ \textb6 + \textNa + \textOH ] + {\left[ {{{\text{b}}_{{6}}} + {\text{Na}} + {\text{OH}}} \right]^{ + }} , produced by α-Asp containing peptides were noted to be much more abundant than those of the peptides with β-Asp, which could be used for distinction of the isomers in Asp2 and Asp6, respectively. In addition, a series of internal ions generated by simultaneous cleavages at Asp residues were detected. Competitive reactions of carboxylic groups occurred between Asp6 side chain and C-terminus. Formation mechanisms of most product ions are proposed. The results obtained in this work are significant since low energy CID has been demonstrated to be effective for the distinction of Asp isomers.  相似文献   

20.
The mer-[Ru(pic)3] isomer, where pic is 2-pyridinecarboxylic acid, undergoes base hydrolysis at pH > 12. The reaction was monitored spectrophotometrically within the UV–Vis spectral range. The product of the reaction, the [Ru(pic)2(OH)2] ion, is formed via a consecutive two-stage process. The chelate ring opening is proceeded by the nucleophilic attack of OH ion at the carbon atom of the carboxylic group and the deprotonation of the attached hydroxo group. In the second stage, the fast deprotonation of the coordinated OH ligand leads to liberation of the monodentato bonded picolinate. The dependence of the observed pseudo-first-order rate constant on [OH] is given by k\textobs1 = \frack + k1 [\textOH - ] + k + k2 K1 [\textOH - ]2 k - + k1 + ( k + + k2 K1 )[\textOH - ] + k + K1 [\textOH - ]2 k_{{{\text{obs}}1}} = \frac{{k_{ + } k_{1} [{\text{OH}}^{ - } ] + k_{ + } k_{2} K_{1} [{\text{OH}}^{ - } ]^{2} }}{{k_{ - } + k_{1} + \left( {k_{ + } + k_{2} K_{1} } \right)[{\text{OH}}^{ - } ] + k{}_{ + }K_{1} [{\text{OH}}^{ - } ]^{2} }} and ( k\textobs2 = \frackca + kcb K2 [\textOH - ]1 + K2 [\textOH - ] ) \left( {k_{{{\text{obs}}2}} = \frac{{k_{ca} + k_{cb} K_{2} [{\text{OH}}^{ - } ]}}{{1 + K_{2} [{\text{OH}}^{ - } ]}}} \right) for the first and the second stage, respectively, where k 1, k 2, k -, k ca , k cb are the first-order rate constants and k + is the second-order one, K 1 and K 2 are the protolytic equilibria constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号