首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
卢靖  黄剑锋 《无机化学学报》2010,26(8):1349-1354
采用原子吸收光谱法检测体外人红细胞摄取Cs+的含量,系统讨论了胞外Cs+浓度,温育时间、温育温度、介质pH值对人红细胞摄取Cs+过程的影响。选用不同离子通道或离子载体的特异性抑制剂进一步探讨Cs+的跨膜途径和机理。结果显示,各实验参数对人红细胞摄取Cs+均有一定的促进作用。Cs+主要借助Na+/K+-泵的主动运输方式跨膜;少量的Cs+能"漏入"细胞,微量的Cs+可以模拟Na+/Li+-反向协同运输的方式跨膜;在允许HCO3-存在的pH环境下,少量Cs+以Cl-/CsCO3-交换的形式通过膜上带3蛋白进入人红细胞;Ca2+通道对Cs+没有通透作用。  相似文献   

2.
The nanomechanical switch 1 with its three orthogonal binding motifs—the zinc(II) porphyrin, azaterpyridine, and shielded phenanthroline binding station—is quantitatively and reversibly toggled back and forth between four different switching states by means of addition and removal of appropriate metal‐ion inputs. Two of the four switching stages are able to initiate catalytic transformations (ON1, ON2), while the two others shut down any reaction (OFF1, OFF2). Thus, in a cyclic four‐state switching process the sequential transformation A + B + C → AB + C → ABC can be controlled, which proceeds stepwise along the switching states OFF1→ON1 (click reaction: A + B → AB )→OFF2→ON2 (Michael addition: AB + C → ABC )→OFF1. Two consecutive cycles of the sequential catalysis were realized without loss in activity in a reaction system with eleven different components.  相似文献   

3.
The mechanisms responsible for the fast granulation of anaerobic sludge caused by Mg2+ and Ca2+ addition was examined in four lab-scale expanded granular sludge bed(EGSB) reactors. Results indicated that both Mg2+ and Ca2+ accelerated the sludge-granulation process and increased the amount of polysaccharides and proteins in the sludge. Energy dispersive x-ray spectrometry(EDX) analysis revealed that, in a mature granule, both Mg2+ and Ca2+ composed as phosphate and calcium was distributed primarily in the periphery of the granule, while magnesium distributed mainly in the interior. The addition of Mg2+ was more favorable for the nuclei formation, whereas the addition of Ca2+ was more favorable for subgranule growth and maintaining the granules' rigid structure. Results showed that the addition of Mg2+ in the nuclei formation stage and Ca2+ in the granule-growth stage accelerated granulation more than adding only one of them in the granulation process.  相似文献   

4.
本文报道了用先进的EXAFS及ESR等方法研究了羧酸型含氟的铜(Ⅱ)离聚体离子微区的内部精细结构,结果表明,铜离聚体的离子微区主要由羧酸根桥键的双核配位结构单元及平面四方形的配位结构单元等聚集而成。在双核配位结构单元中第一层为Cu~(2+)—O配位,配位数为4,配位键键长为1.96A,第二配位层为Gu~(2+)—Cu~(2+)配位,Cu~(2+)—Gu~(2+)间距为2.64A。平面四方形的配位结构单元Cu~(2+)—O的配位数为4,配位键键长为1.96A。共聚物中羧基含量对离聚体的基本配位结构单元和离子微区的精细结构影响较小,但对微区大小有影响。  相似文献   

5.
Collision induced dissociation (CID), four center reaction (4C), and single exchange reaction (SE) in H(2) (v(1) = high) + D(2) (v(2) = low) were studied by means of time-dependent wave packet approach within a full-dimensional model. Initial state-selected total reaction probabilities for the three competitive processes have been computed on two realistic global potential energy surfaces of Aguado-Suárez-Paniagua and Boothroyd-Martin-Keogh-Peterson (BMKP) with the total angular momentum J = 0. The role of both vibrationally excited and rotationally excited reagents was examined by varying the initial vibrational and rotational states. The vibrational excitation of the hot diatom gives an enhancement effect on the CID process, while the vibrational excitation of the cold diatom gives an inhibition effect. The rotational excitation of both reagents has a significant effect on the reaction process. The 4C and SE probabilities are at least one order of magnitude smaller than the CID probabilities over the energy range considered. Isotope substitution effects were also studied by substituting the collider D(2) by H(2) and HD on the BMKP potential energy surfaces. The CID process is most efficient for the H(2) + D(2) combination and least efficient for the H(2) + H(2) combination and is different for the 4C and SE processes.  相似文献   

6.
The pyrolysis mechanisms of thiophene in asphaltenes have been investigated theoretically using density functional and ab initio quantum chemical techniques. All of the possible reaction pathways were explored using B3LYP, MP2, and CBS-QB3 models. A comparison of the calculated heats of reaction with the available experimental values indicates that the CBS-QB3 level of theory is quantitatively reliable for calculating the energetic reaction paths of the title reactions. The pyrolysis process is initiated via four different types of hydrogen migrations. According to the reaction barrier heights, the dominant 1,2-H shift mechanism involves two competitive product channels, namely, C(2)H(2) + CH(2)CS and CS + CH(3)CCH. The minor channels include the formation of CS + CH(2)CCH(2), H(2)S + C(4)H(2), HCS + CH(2)CCH, CS + CH(2)CHCH, H + C(4)H(3)S, and HS + C(4)H(3). The methyl substitution effect was investigated with the pyrolysis of 2-methylthiophene and 3-methylthiophene. The energetics of such systems were very similar to that for unsubstituted thiophene, suggesting that thiophene alkylation may not play a significant role in the pyrolysis of asphaltene compounds.  相似文献   

7.
A detailed study on the photophysical and complexing properties of calixarenes bearing two and four dansyl derivatives (Calix-DANS2 and Calix-DANS4) in a CH3CN/H2O mixture (60:40 v/v) is reported. Calix-DANS2 shows a high selectivity towards Hg2+ over interfering cations (Na+, K+, Ca2+, Cu2+, Zn2+, Cd2+ and Pb2+) and a sensitivity in the 10(-7) mol L(-1) concentration range. The complexation of mercury ion induces a strong fluorescence quenching due to a well-defined electron transfer process from the fluorophore to the metal center. Calix-DANS4 exhibits an extremely high affinity for Pb2+ with a high selectivity over various competing ions. The unprecedented detection limit (4 microg L(-1)) is fully compatible with the level defined by the World Health Organisation. The affinity of Calix-DANS4 for Pb2+ can be rationalized by the activation of the inert pair of electrons on Pb2+. The number of fluorophores involved in the complexation can be determined from a careful time-resolved fluorescence characterization.  相似文献   

8.
The full details of investigations into the cobalt(I)-catalyzed ene type reaction of epsilon-acetylenic beta-keto esters to form highly functionalized methylenecyclopentanes are described. The observed regio-, chemo-, and stereoselectivities support a process of cycloisomerization which controls the relative stereochemistry of two contiguous stereogenic centers. An efficient route to the basic skeleton of the phyllocladane family has been achieved via a one-pot sequence of cyclizations: ene type, [2 + 2 + 2], [4 + 2]. This new cascade created six carbon-carbon bonds and four rings in a totally stereoselective manner from an easily accessible acyclic polyunsaturated precursor.  相似文献   

9.
[reaction: see text] In only four steps from 2-cyclopentenone and 2-cyclohexenone, sequential three- or four-atom and then one- to three-atom ring enlargements produce nine- to 12-membered hydroxyolefinic lactones on a gram scale. 2-Cyclopentenone undergoes this serial 5 + 3 + 2 process to form 10-membered ring natural (-)-phoracantholide-J in six linear steps and 26% overall yield.  相似文献   

10.
Calcium ion binding by the four EF-hand motifs of the protein calmodulin (CaM) is a central event in Ca2+-based cellular signaling. To understand molecular details of this complex process, isolated Ca2+-binding loops can be studied, by use of both experiments and calculations. In this work, we explore the metal specificity of the four Ca2+-binding loops of CaM using density functional theory (DFT) quantum chemical calculations and molecular dynamics simulations. We study CaM complexes with the physiologically important ions of calcium (Ca2+) and magnesium (Mg2+) and also with two other ions, strontium (Sr2+) and lanthanum (La3+). The former is of interest in the area of radioactive waste bioremediation, whereas the latter is often used as a probe of Ca2+-binding sites. We obtain intrinsic metal ion-loop binding energies as well as their components: vacuum, charge-transfer, solvation, entropy, and deformation terms. A detailed analysis of the results reveals that the total binding energy depends on a delicate balance among these energy components. They, in turn, are determined by the cation's charge and size as well as the amino acid composition and flexibility of the loops and the identity of the metal-chelating residues.  相似文献   

11.
Fe K absorption spectra of an electrically conductive polymer——FeCl_3-doped polythiophene and model compound [N(C_2H_5)_4][FeCl_4] were measured with a laboratory EXAFS system, which utilizes a high power rotating-anode X-ray generator (Rigaku model RU-1000) as a X-ray source. The analysis of observed EXAFS data shows that Fe atom is surrounded by four Cl atoms with Fe-Cl distance of 2.19. It is concluded that the dopant exists mainly in the form of FeCl_4~-. The result provides a direct structural information that strongly supports the proposition: the doping process is as follows2FeCl_3+e~-→FeCl_4~-+FeCl_2  相似文献   

12.
This article describes the design and optimization of a simple three-component aza[4+2]/allylboration reaction to access polysubstituted alpha-hydroxyalkyl piperidines in a highly diastereocontrolled fashion from maleimides, 4-boronohydrazonodienes, and aldehydes. The aldehyde component does not interfere with the first aza[4+2] step, and it was found that this tandem reaction provides better yields of piperidine products 5 when carried out in one-pot. The required 4-borono-hydrazonodienes 1 are synthesized efficiently from the condensation of 3-boronoacrolein pinacol ester (4) with hydrazines. Overall, the three-component process using N-substituted maleimides as dienophiles produces four stereogenic centers and is quite general. It tolerates the use of a wide variety of aldehydes and hydrazine precursors with different electronic and steric characteristics. By allowing such a wide substrate scope and up to four elements of diversity, this reaction process is particularly well adapted towards applications in diversity-oriented synthesis of polysubstituted piperidine derivatives. The suitability of the aza[4+2]/allylboration reaction for use in solid-phase chemistry was also demonstrated using a N-arylmaleidobenzoic acid functionalized resin. This novel multicomponent reaction thus offers a high level of stereocontrol and versatility in the preparation of densely functionalized nitrogen heterocycles.  相似文献   

13.
The reactions of gas-phase Cu+(1S) and Cu+(3D) with CH3Cl, CH2ClF, CHClF2, and CClF3 are examined using the drift cell technique at 3.5 Torr. State-specific product channels and overall bimolecular rate constants for depletion of the two Cu+ states are determined using electronic state chromatography. Cu+(1S) participates exclusively in association with all four neutrals, whereas Cl abstraction is the dominant product channel for Cu+(3D). The resulting CuCl+ product subsequently abstracts Cl- in a secondary process. Tertiary reactions are also observed, which include both hydride abstraction (with CH3Cl) and fluoride abstraction (with the fluorinated neutrals). All product channels can be understood in terms of the known thermochemical and quantum mechanical (i.e., spin) requirements. Cu+(1S) is depleted by all four neutrals at 30% to 40% of the ADO rate under these conditions, whereas Cu+(3D) is observed to react at approximately 80% of the ADO rate with CH3Cl, CH2ClF, and CHClF2. Reaction of excited state Cu+ with CClF3 occurs at only 7% of the ADO rate. The behavior of Cu+(3D) is consistent with a mechanism in which formation of CuCl+ occurs exclusively on the triplet surface via a mechanism in which the metal ion must interact exclusively with Cl.  相似文献   

14.
The first implementation of the intrinsic reaction coordinate (IRC ) method within the density functional theory (DFT ) framework is presented. The implementation has been applied to four different types of chemical reactions represented by the isomerization process, HCN ? HNC (A); the SN2 process, H? + CH4 ? CH4 + H? (B); the exchange process, H˙ + HX ? HX + H˙ (X ? F,Cl) (C); and the elimination process, C2H5Cl ? C2H4 + HCl (D). The present study presents for each process optimized structures and calculated harmonic vibrational frequencies for the reactant(s), the transition state, and the product(s) along with the IRC path connecting the stationary points. The calculations were carried out within the local density approximation (LDA ) as well as the LDA/NL scheme where the LDA energy expression is augmented by Perdew's and Becke's nonlocal (NL ) corrections. The LDA and LDA/NL results are compared with each other as well as the best available ab initio calculations and experimental data. For reaction (D), ab initio calculations based on MP 2 geometries and MP 4SDTQ energies have been added due to the lack of accurate published post-HF calculations on this process. A detailed discussion is provided on the efficiency of the IRC algorithms, the relative accuracy of the DFT and ab initio schemes, as well as the reaction mechanisms of the four reactions. It is concluded that the LDA/NL scheme affords the same accuracy as does the MP 4 method. The post-HF methods seem to overestimate activation energies, whereas the corresponding LDA/NL estimates are too low. The LDA activation energies are even lower than the LDA/NL counterparts. The incorporation of the IRC method into the DFT framework provides a promising and reliable tool for probing the chemical reaction path on the potential energy surfaces, even for large-size systems. IRC calculations by ab initio methods of an accuracy similar to the LDA/NL scheme, such as the MP 4 scheme, are not feasible. © John Wiley & Sons, Inc.  相似文献   

15.
Abstract— Using isolated chloroplasts and techniques as described by Joliot and Joliot[6] we studied the evolution of O2 in weak light and light flashes to analyze the interactions between light induced O2 precursors and their decay in darkness. The following observations and conclusions are reported: 1. Light flashes always produce the same number of oxidizing equivalents either as precursor or as O2. 2. The number of unstable precursor equivalents present during steady state photosynthesis is ∼ 1.2 per photochemical trapping center. 3. The cooperation of the four photochemically formed oxidizing equivalents occurs essentially in the individual reaction centers and the final O2 evolution step is a one quantum process. 4. The data are compatible with a linear four step mechanism in which a trapping center, or an associated catalyst, ( S ) successively accumulates four + charges. The S 4+ state produces O2 and returns to the ground state S 0. 5. Besides S 0 also the first oxidized state S + is stable in the dark, the two higher states, S2+ and S3+ are not. 6. The relaxation times of some of the photooxidation steps were estimated. The fastest reaction, presumably S *1← S 2, has a (first) half time ≤ 200 μsec. The S *2 state and probably also the S *0 state are processed somewhat more slowly (˜ 300–400 μsec).  相似文献   

16.
The association of various alpha-amino acids with four new, coordinatively unsaturated metal complexes ([Cu(5)]2+, [Cu(6)]2+, [Cu(7)]2+, and [Zn(8)]2+) was examined. The receptors [Cu(5)]2+ and [Cu(7)]2+ were found to discriminate histidine (His) from other zwitterionic alpha-amino acids by means of indicator-displacement assays (IDAs) using 5(6)-carboxyfluorescein as an indicator in buffered methanol/water (3:1) solvent. The colorimetric detection of His was achieved by using this IDA method, which appears to owe its selectivity to a unique process involving disruption of the host complex to form a 2:1 His/Cu(II) complex rather than simple indicator displacement. The occurrence of distinct intermolecular coordination processes in response to the introduction of a different amino acid is observed. X-ray crystal structures of the host metal complexes were obtained and exhibit the adoption of a variety of coordination geometries about the metal center.  相似文献   

17.
In this study, optimum conditions for adsorption of heavy metals such as Cu2+, Cd2+ and Pb2+ onto a low-cost, magnetically modified-alkali conditioned anaerobically digested sludge (MADS) adsorbent were obtained. Response Surface Methodology (RSM) incorporating Central Composite Design (CCD) of experiments was applied to optimize four independent process variables. Statistical analysis was executed by ANOVA and the quadratic model developed had regression coefficients of 0.959, 0.957 and 0.95 for Cu2+, Cd2+ and Pb2+, respectively. The independent variables such as pH, time and initial concentration positively influenced adsorption capacity, qe, whereas the value of qe decreased with an increase in MADS dosage. Model validation experiments for optimization of adsorption process showed comparable results with predicted values. The adsorption capacity of MADS adsorbent at optimum conditions found through RSM analysis was 29.721 mg L?1, 28.551 mg L?1 and 28.601 mg L?1 for Cu2+, Cd2+ and Pb2+ respectively.  相似文献   

18.
刘琼  汪佩  张干兵 《化学学报》2012,70(12):17-26
为了探寻OsO+与H2气相反应的机理,用密度泛函理论方法 UB3LYP,全优化了该反应的加成(氧化加成和[2+2]环加成)-消除、氢抽提-反弹,以及氧端插入等四种可能路径中所有可能的反应物、中间体、过渡态和产物在六重态、四重态和二重态等三个自旋态下的几何结构,计算了各种机理反应的势能面.结果表明,标题反应为自旋禁阻反应,反应起始自四重态,最终产物为六重态基态,整个反应放热21.0 kJ mol-1.因反应络合物相对于入口通道有太正Gibbs函数,氧端插入机理是高能的过程.其他三种机理都具有多(或二)态反应性(MSR或TSR).其中,两种加成-消除机理的最低能量路径都可能经由四重态-二重态-四重态-六重态的三次自旋翻转,抽提-反弹机理的最低能量路径可能经历由四重态-六重态的自旋翻转.抽提-反弹机理由势能面一路攀升的吸热氢抽提过程和几乎无能垒的强放热的反弹过程组成,所以按该机理反应在常温常压下难以发生.两种加成-消去机理的决速步(第二个H的迁移步)相同,虽然其位垒稍高,为156.9 kJ mol-1,但与其进程中前面的强放热步骤耦合,常温常压下该反应是可以发生的.其中,协同环加成步的位垒仅28.7 kJ mol-1,比第一个H的还原消去步的位垒低113.7 kJ mol-1,所以竞争的结果是,常温常压下[2+2]环加成-消去机理比氧化加成-消去机理在动力学上更有利.  相似文献   

19.
The QCISD and QCISD(T) quantum chemical methods have been used to characterize the energetics of various possible mechanisms for the formation of HCF2+ from the bond-forming reaction of CF3(2+) with H2. The stationary points on four different pathways leading to the product combinations HCF2+ + H+ + F and HCF2+ + HF+ have been calculated. All four pathways begin with the formation of a collision complex [H2-CF3]2+, followed by an internal hydrogen atom migration to give HC(FH)F2(2+). In two of the mechanisms, immediate charge separation of HC(FH)F2(2+) via loss of either HF+ or a proton, followed by loss of an F atom, yields the experimentally observed bond-forming product HCF2+. For the other two mechanisms, internal hydrogen rearrangement of HC(FH)F2(2+) to give C(FH)2F(2+), followed by charge separation, yields the product CF2H+. This product can then overcome a 2.04 eV barrier to rearrange to the HCF2+ isomer, which is 1.80 eV more stable. All four calculated mechanisms are in agreement with the isotope effects and collision energy dependencies of the product ion cross sections that have been previously observed experimentally following collisions between CF3(2+) and H2/D2. We find that in this open-shell system, CCSD(T) and QCISD(T) T1-diagnostic values of up to 0.04 are acceptable. A series of angularly resolved crossed-beam scattering experiments on collisions of CF3(2+) with D2 have also been performed. These experiments show two distinct channels leading to the formation of DCF2+. One channel appears to correspond to the pathway leading to the ground state 1DCF2+ + D+ + F product asymptote and the other to the 3DCF2+ + D+ + F product asymptote, which is 5.76 eV higher in energy. The experimental kinetic energy releases for these channels, 7.55 and 1.55 eV respectively, have been determined from the velocities of the DCF2+ product ion and are in agreement with the reaction mechanisms calculated quantum chemically. We suggest that both of these observed experimental channels are governed by the reaction mechanism we calculate in which charge separation occurs first by loss of a proton, without further hydrogen atom rearrangement, followed by loss of an F atom to give the final products 1DCF2+ + D+ + F or 3DCF2+ + D+ + F.  相似文献   

20.
The physiological electron-transfer (ET) partners, cytochrome c peroxidase (CcP) and cytochrome c (Cc)1, can be modified to exhibit photoinitiated ET through substitution of Zn (or Mg) for Fe in either partner. Laser excitation of the Zn-porphyrin (ZnP) to its triplet excited state (3ZnP) initiates direct heme-heme ET to the ferriheme center of its partner across the protein-protein interface. This photoinitiated ET produces the charge-separated intermediate, I = [ZnP+CcP, Fe2+Cc], with a metalloporphyrin pi-cation radical (ZnP+) in the donor protein and a ferroheme acceptor protein. I, in general, is thought to return to the ground state by a thermal ET process that involves direct heme-heme back-ET to complete a simple photocycle. We here contrast intracomplex ET between yeast iso-1 Cc and ZnCcP(WT) (wild-type) with that for two ZnCcP(X) variants: X = W191F, with redox-active W191 replaced by Phe; WYM4, a W191F mutant with further replacement of four other potentially redox-active sites (W51F, Y187F, Y229F, and Y236F). The results show that W191 acts as an ET mediator, which "short-circuits" the direct heme-heme back-ET through a two-step, hopping process in which the ZnP+ cation radical formed by photoinitiated ET rapidly oxidizes W191, and the resultant W191+, in turn, rapidly oxidizes Fe2+Cc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号