首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulation with the embedded atom method was applied to study the melting and coalescence in the mixed Cu–Ni nanoclusters. The validity of the model was tested by examining the consistency of the phase diagrams of the (Cu682-mNim)682 and (Cu1048-mNim)1048 clusters with the Cu–Ni bulk. The coalescences of two mixed Cu–Ni clusters and a pure Cu cluster with a pure Ni cluster were simulated. The coalesced temperature T c forming a liquid complex and melting temperature T m of the cluster with the same size were compared. The results indicate that T c is higher than T m for the coalescences of both (CuNi)682 and (CuNi)1048 clusters. The analysis of the relationship between the Cu–Ni bond content and T c indicates that the formation of the Cu–Ni bonds contributes a lot to the phenomenon.  相似文献   

2.
《Electroanalysis》2004,16(7):532-538
The cathodic reduction of NO in 1.0 M HClO4 is investigated by voltammetry at pure Ni and Cu electrodes, and three Cu‐Ni alloy electrodes of varying composition, all configured as rotated disks. Voltammetric data obtained using these hydrodynamic electrodes demonstrate significantly improved activity for NO reduction at Cu‐Ni alloy electrodes as compared to the pure Ni and Cu electrodes. This observation is explained on the basis of the synergistic benefit of different surface sites for adsorption of H‐atoms, generated by cathodic discharge of H+ at Ni‐sites, and adsorption of NO at Cu‐sites on these binary alloy electrodes. Koutecky‐Levich plots indicate that the cathodic response for NO at a Cu75Ni25 electrode corresponds to an 8‐electron reduction, which is consistent with production of NH3. In comparison, the cathodic response at Cu50Ni50 and Cu25Ni75 electrodes corresponds to a 6‐electron reduction, which is consistent with production of NH2OH. Flow injection data obtained using Cu50Ni50 and Cu25Ni75 electrodes with 100‐μL injections exhibit detection limits for NO of ca. 0.95 μM (ca. 95 pmol) and 0.60 μM (ca. 60 pmol), respectively.  相似文献   

3.
Three‐dimensional (3D) interconnected metal alloy nanostructures possess superior catalytic performance owing to their advantageous characteristics, including improved catalytic activity, corrosion resistance, and stability. Hierarchically structured Ni‐Cu alloys composed of 3D network‐like microscopic branches with nanoscopic dendritic feelers on each branch were crafted by a facile and efficient hydrogen evolution‐assisted electrodeposition approach. They were subsequently exploited for methanol electrooxidation in alkaline media. Among three hierarchically structured Ni‐Cu alloys with different Ni/Cu ratios (Ni0.25Cu0.75, Ni0.50Cu0.50, and Ni0.75Cu0.25), the Ni0.75Cu0.25 electrode exhibited the fastest electrochemical response and highest electrocatalytic activity toward methanol oxidation. The markedly enhanced performance of Ni0.75Cu0.25 eletrocatalyst can be attributed to its alloyed structure with the proper Ni/Cu ratio and a large number of active sites on the surface of hierarchical structures.  相似文献   

4.
Structural and dynamical properties of model 13-atom NinAlm alloy clusters derived from a many-body potential are presented and discussed. Characterization of the structures corresponding to a given stoichiometric composition (i.e., chosen number of Ni and Al atoms) is carried out in terms of isomeric (geometric) forms and different distributions of the two types of atoms between the sites of a chosen isomer. We use the term homotops (“the same topography or geometry”) to label the structural forms that differ only by these distributions. The number and the energy spectra of the homotops are sensitive functions of the stoichiometric composition and isomeric form. Similarly to homogeneous clusters, alloy clusters undergo a solid-to-liquidlike transition as their energy is increased. Individual stages in the transition, such as isomerizations involving only surface atoms, isomerizations involving all atoms, surface melting (in a system as small as 13 atoms), and complete melting are identified and characterized. The actual occurrence of some or all of these stages in the meltinglike transition of a given cluster depends on the character of the energy spectra of its homotops, i.e., ultimately, on its stoichiometric composition. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 185–197, 1997  相似文献   

5.
The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C 2 ± (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.  相似文献   

6.
We present a combined Monte‐Carlo/molecular dynamics study of a Cu0.327Ni0.673 alloy system. On the basis of nearest‐neighbor coordination number analyses atomic clustering and phase segregation is explored. Along this line, free energy profiles are calculated and separated into entropic and energetic contributions. The competition of both terms was found in accordance to the experimental phase diagrams (phase separation of the solid solution below about 600 Kelvin). Two independent simulation runs were performed. At 1000 Kelvin the observed configurations correspond to solid solutions exhibiting a weak tendency to cluster atoms of identical species. At room temperature the energetic favoring of atomic separation is clearly dominant and leads to the formation of Ni‐rich and Cu‐rich domains. The latter are separated by interfacial regions whose width ranges from 0.5 to 1 nanometers.  相似文献   

7.
Yueru Li  Prof. Dunyou Wang 《Chemphyschem》2023,24(19):e202300640
Ab initio molecular dynamics calculations were performed to study H2 dissociation mechanisms on Cu13 and defective graphene-supported Cu13 clusters. The study reveals that seven types of corresponding dissociation processes are found on the two clusters. The average dissociation energy barriers are 0.51 eV on the Cu13 cluster and 0.12 eV on the defective graphene-supported Cu13 cluster, which are lowered by ~19 % and ~81 % compared with the pristine Cu(111) surface, respectively. Furthermore, compared with the pure Cu13 cluster, the average dissociation energy barrier on the defective graphene-supported Cu13 cluster is substantially reduced by about 76 %. The preferred dissociation mechanisms on the two clusters are H2 located at a top-bridge site with the barrier heights of 0.30 eV on the Cu13 cluster and −0.31 eV on the defective graphene-supported Cu13 cluster. Analysis of the H−Cu bond interactions in the transition states shows that the antibonding-orbital center shifts upward on the defective graphene-supported Cu13 cluster compared with the one on the Cu13 cluster, which explains the reduction of the dissociation energy barrier. The average adsorption energy of dissociated H atoms is also greatly enhanced on the defective graphene-supported Cu13 cluster, about twice that on the Cu13 cluster.  相似文献   

8.
Using density functional theory we present a systematic study of the electronic and magnetic properties of various nickel clusters and two small bimetallic clusters, Ni n Co m and Ni n Fe m (n + m ≤ 6). A detail study of binding energy, magnetic moment and stability function of pure nickel clusters of nuclearity (N) 40–60 have been performed. We observe that the magic numbers occur at N = 43, 46, 49, 53, 55, and 58, which correspond to the most stable clusters. We find that, with increase in substitution of Co and Fe atoms in Ni cluster, while Ni n Co m becomes more stable, the Ni n Fe m clusters become less stable. The significant enhancement of average magnetic moment and suppression of local magnetic moment of nickel atoms are found in both clusters with increase in Co and Fe concentration.  相似文献   

9.
10.
The initial steps of copper electrocrystallization process from aqueous solutions have been studied at DFT level of theory. It has been shown that Cu(H2O) unit is the final product of Cu2+-ions electroreduction. From this particle clusters Cun·aq are formed and grow. Aggregation of copper atoms to the Cun·aq clusters consists of two steps. The first step includes condensation of Cu(H2O) units to hydrated clusters Cun(H2O)n (n = 2–6). At the second step bonding of Cu(H2O) particles is accompanied by dehydration of clusters yielding Cun(H2O)m structures (n > m). Cluster Cu7·aq has been singled out as key structure based on calculated values of energies and Cu–Cu bond distances of Cun·aq clusters. This cluster is of D5h symmetry which is typical for copper microcrystals formed from aqueous solutions in electrocrystallization processes on foreign surface. This key particle could be considered as a critical nucleus. Number of copper atoms therein matches average dimension of critical nucleus.  相似文献   

11.
Density functional theory calculations are performed to analyze the structure and stability of Cu and Cu-K clusters with 3 to 9 atoms. The results indicate that the stability of the clusters decreases after doping with a K atom. With the increase of cluster size, the stability of the clusters shows odd-even alternation. Cu8 and Cu7K clusters exhibit the highest stability. Next, different adsorption sites are considered to investigate the geometry of CunNO and Cun−1KNO clusters. By calculating the adsorption energy and the HOMO-LUMO energy gap, it is determined that both types of reactions are exothermic processes, indicating stable adsorption of NO. Notably, the CunK clusters are more active (stronger adsorption) for NO than the Cun clusters. The most chemically active clusters among CunNO and Cun−1KNO clusters are Cu8NO and Cu7KNO clusters. Finally, electron transfer and Mayer bond order analysis of Cu8NO and Cu7KNO clusters reveal that the N O bond order decreases due to electron transfer when Cu/Cu-K clusters adsorb NO. In this process, the N atom is the electron donor and the Cu atom is the electron acceptor. Fundamental insights obtained in this study can be useful in the design of Cu/Cu-K catalysts.  相似文献   

12.
An all-electron scalar relativistic calculation on Cu n H (n = 1–13) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. Our results reveal that the hydrogen atom prefers to occupy the two fold coordination site for Cu n H (n = 2, 4–6, 8, 10–13) clusters, the single fold coordination site for Cu n H (n = 1, 3, 7) and the three fold coordination site for Cu9H cluster. For all Cu n H clusters, only the Cu11 structure in Cu11H is distorted obviously. After adsorption, the Cu–Cu bond is strengthened and the Cu–H bond of odd-numbered Cu n H clusters is relatively stronger than that of adjacent even-numbered Cu n H clusters. The Cu–Cu bond-length and Cu–H bond-length for all Cu n H clusters of our work are significantly shorter than those of previous work. This discrepancy can be explained in terms of the scalar relativistic effect. The most favorable adsorption between small copper clusters and hydrogen atom takes place in the case that hydrogen atom is adsorbed onto an odd-numbered pure Cu n cluster and becomes Cu n H cluster with even number of valence electrons. The odd–even alteration of magnetic moments is observed in Cu n H clusters and may provide the material with tunable code capacity of “0” and “1” by adsorbing a hydrogen atom onto odd- or even-numbered copper clusters.  相似文献   

13.
A novel trinuclear NiII cluster, {[Ni(H2L)(EtOH)]2(OAc)2Ni} · 2EtOH [H4L:5,5′-Dihydroxy-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol], has been synthesized and structurally characterized. The X-ray crystal structure of the cluster reveals that two acetates coordinate to three nickel ions through Ni–O–C–O–Ni bridges and four μ-phenoxo oxygen atoms from two [Ni(H2L)] units also coordinate to nickel ions. Around three nickel atoms are all octahedral geometries.  相似文献   

14.
The metal‐rich chalcogenides NiPdTe and Ni2PdSe2 were synthesized by heating stoichiometric mixtures of the elements at 823–1323 K in silica ampoules under argon atmosphere. The structures were determined by single crystal X‐ray diffraction. NiPdTe (Pnma, a = 8.337(2), b = 3.758(1), c = 6.290(1) Å, Z = 4) is build up by a distorted cubic closed packing of Te atoms with Ni atoms in one half of the tetrahedral holes. The Ni atoms form zigzag‐chains with short Ni–Ni bonds. The Pd atoms are located in the octahedral holes and are fivefold coordinated by Te atoms due to a strong shift off the centers. The structure of NiPdTe is related to the TiNiSi type due to a similar nickel substructure and to the Cu2Sb type with respect to the fcc packing of the anions. Ni2PdSe2 (I4/mmm, a = 10.446(1), c = 5.751(1) Å, Z = 8) forms a new structure type with strongly distorted edge‐ and corner‐sharing NiSe4 tetrahedra. The Pd atoms are either planar coordinated by four Se or located in the centers of face‐sharing Ni8 cubes. The structure of Ni2PdSe2 merges metallic building blocks with structural fragments typical for polar compounds.  相似文献   

15.
Atomic oxygen chemisorption has been studied for the fourfold hollow site of the Ni(100) surface and for the threefold hollow site of the Ni(111) surface. To model the Ni(100) surface, 10 different clusters in the range Ni5 to Ni41 were used, and for the Ni(111) surface, 11 different clusters in the range Ni13 to Ni43 were used. A detailed analysis of the orbital occupations of the cluster with and without oxygen for the different clusters shows that there are three different possible bonding mechanisms. In two of these, the basic feature is that a1 electrons of the cluster are kicked out by the oxygen 2pz orbital and moved to holes in the 2px, y orbitals. A picture where the oxygen electrons fit into the electronic structure of the cluster is emphasized. The third mechanism, which is applicable for only one cluster, can be described as the formation of two covalent bonds of E symmetry. The final best estimate of the oxygen chemisorption energy for the Ni(100) surface is about 130 kcal/mol, and for the Ni(111) surface, about 115 kcal/mol. In particular for the Ni(111) surface, an excited oxygen state with radical character is identified, which might be a catalytically important species. The excitation energy to reach this state should be on the order of 10 kcal/mol for the Ni(111) surface.  相似文献   

16.
Density‐functional with generalized gradient approximation (GGA) for the exchange‐correlation potential has been used to calculate the energetically global‐minimum geometries and electronic states of NinAl (n = 2–8) neutral clusters. Our calculations predict the existence of a number of previously unknown isomers. All structures may be derived from a substitution of a Ni atom at marginal positions by an Al atom in the Nin+1 cluster. Aluminum atom remains on the surface of the geometrical configurations. Moreover, these species prefer to adopt three‐dimensional (3D) spacial forms at the smaller number of nickel atoms compared with the pure Nin+1 (n ≥ 3) configuration. Atomization energies per atom for NinAl (n = 2–8) have the same trend as the binding energies per atom for Nin (n = 3–9). The stabilization energies reveal that Ni5Al is the relatively most stable in this series. In comparison with the magnetic moment of pure metal nickel (0.6 μB), the average magnetic moment of Ni atom increases in Ni Al clusters except the Ni3Al. Moreover, except the case of Ni5Al, Ni average magnetic moment decreases when alloyed with Al atoms than that in pure Ni clusters, which originate the effective charge transferring from Al to Ni atoms. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
Summary The convergence of the cluster model with respect to excitation energies, ionization potentials and hydrogen chemisorption energy in the four-fold hollow site of the Ni(100) surface is studied for a sequence of cluster models from Ni5 up to Ni181. For the largest, Ni481, cluster studied, only the structure of the occupied levels for one state is obtained. The concept of bond-preparation is found to be essential for the evaluation of chemisorption energies also for clusters with more than 100 atoms. The cluster excitation energies show a slow decrease such that even for Ni181 the step between the lower excited states is still 0.1–0.2 eV. The effect ofp-functions on surrounding cluster atoms is found to be 3–4 kcal/mol independent of cluster-size. The direct SCF program DISCO was parallelized using the TCGMSG toolkit in order to perform the calculations. The easy strategy utilized is analysed and exhaustive timings on the Alliant Campus/800 MPP system with 200 CPU's are presented.  相似文献   

18.
Dinickel ditin zinc, Ni2Sn2Zn, crystallizes in the cubic space group , with a lattice parameter of a = 8.845 (1) Å and with all atoms occupying special positions. The crystal structure exhibits pronounced similarities with that of the quaternary compound Ni5.20Sn8.7Zn4.16Cu1.04. It shares structural features with other compounds in the Ni–Sn–Zn system, such as Ni5Sn4Zn and Ni3Sn2.  相似文献   

19.
The oxidation mechanisms of CO to CO2 on graphene‐supported Pt and Pt‐Al alloy clusters are elucidated by reactive dynamical simulations. The general mechanism evidenced is a Langmuir–Hinshelwood (LH) pathway in which O2 is adsorbed on the cluster prior to the CO oxidation. The adsorbed O2 dissociates into two atomic oxygen atoms thus promoting the CO oxidation. Auxiliary simulations on alloy clusters in which other metals (Al, Co, Cr, Cu, Fe, Ni) replace a Pt atom have pointed to the aluminum doped cluster as a special case. In the nanoalloy, the reaction mechanism for CO oxidation is still a LH pathway with an activation barrier sufficiently low to be overcome at room temperature, thus preserving the catalyst efficiency. This provides a generalizable strategy for the design of efficient, yet sustainable, Pt‐based catalysts at reduced cost.  相似文献   

20.
The synthesis and the structures of (i) the ligand N,N‐Diethyl‐N′‐3,5‐di(trifluoromethyl)benzoylthiourea HEt2dtfmbtu and (ii) the NiII and PdII complexes of HEt2dtfmbtu are reported. The ligand coordinates bidendate forming bis chelates. The NiII and the PdII complexes are isostructural. The also prepared CuII complex could not be characterized by X‐ray analysis. However, the preparation of diamagnetically diluted powders Cu/Ni(Et2dtfmbtu)2 and Cu/Pd(Et2dtfmbtu)2 suitable for EPR studies was successful. The EPR spectra of the Cu/Ni and Cu/Pd systems show noticeable differences for the symmetry of the CuS2O2 unit in both complexes: the Cu/Pd system is characterized by axially‐symmetric g< and A cu tensors; for the Cu/Ni system g and A Cu have rhombic symmetry. EPR studies on frozen solutions of the CuII complex show the presence of a CuII‐CuII dimer which is the first observed for CuII acylthioureato complexes up to now. The parameters of the fine structure tensor were used for the estimation of the CuII‐CuII distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号