首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

2.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

3.
The magnetic ordering of the Fe2P-type Tb6FeTe2, Tb6CoTe2 Tb6NiTe2 and Er6FeTe2 phases (space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. Tb6FeTe2, Tb6CoTe2 and Tb6NiTe2 demonstrate high-temperature ferromagnetic and low-temperature spin reorientation transitions, whereas Er6FeTe2 shows antiferromagnetic transition, only.The Tb6FeTe2 and Tb6NiTe2 phases show same high-temperature collinear ferromagnetic structure, whereas Tb6FeTe2 is the commensurate non-collinear ferromagnet and Tb6NiTe2 is the canted ferromagnetic cone with K1=[0, 0, ±3/10] and K2=[±2/9, ±2/9, 0] wave vectors at 2 K. The magnetic structure of Er6FeTe2 is a flat spiral with K1=[0, 0, ±1/10] at 2 K. The magnetic entropy change for Tb6NiTe2 is ΔSm=−4.86 J/kg K at 229 K for the field change Δμ0H=0-5 T.In addition, novel Fe2P-type Gd6FeTe2, Zr6FeTe2, Hf6FeTe2, Dy6NiTe2, Zr6NiTe2 and Hf6NiTe2 phases have been obtained.  相似文献   

4.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

5.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

6.
Pentavalent bis(triorganosiloxy)triphenylantimony derivatives, Ph3Sb(OSiR3)2 (R = Me, Ph), were synthesized by reaction of triphenylantimony with trimethyl- or triphenylsilanol in the presence of tert-butylhydroperoxide by the mild reaction conditions (0-5 °C, 2 h). The reaction of triphenylantimony with diethanolamine in the presence of tert-butylhydroperoxide gave the cyclic compound Ph3Sb(OCH2CH2)2NH. The mixture of Ph3SbO and Ph3Sb(OCH2CH2NMe2)2 was obtained by the reaction of triphenylantimony with 2-(N,N-dimethylamino)ethanol in the presence of tert-butylhydroperoxide.  相似文献   

7.
The isostructural alkali thioferrate compounds CsFe2S3, RbFe2S3 and KFe2S3 have been synthesized by reacting Fe and S with their corresponding AFeS2 (A=K, Rb, Cs) precursors. The crystal structures of these and binary compounds of intermediate composition were determined by Rietveld analysis of laboratory powder X-ray diffraction patterns. All of the synthesized compounds adopt the space group Cmcm (#63), Z=4 with: a=9.5193(8) Å, b=11.5826(10) Å, c=5.4820(4) Å for CsFe2S3; a=9.2202(7) Å, b=11.2429(9) Å, c=5.4450(3) Å for RbFe2S3; and a=9.0415(13) Å, b=11.0298(17) Å, c=5.4177(6) Å for KFe2S3. These mixed valence alkali thioferrates show regular changes in cell dimensions, AS10 (A=K, Rb, Cs) polyhedron volumes, polyhedron distortion parameters, and calculated oxidation state of Fe with respect to increasing size of the alkali element cation. The calculated empirical oxidation state of iron varies from +2.618 (CsFe2S3), through +2.666 (RbFe2S3) to +2.77 (KFe2S3).  相似文献   

8.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

9.
The uranyl and neptunyl(VI) iodates, K3[(UO2)2(IO3)6](IO3)·H2O (1) and K[NpO2(IO3)3]·1.5H2O (2), have been prepared and crystallized under mild hydrothermal conditions. The structures of 1 and 2 both contain one-dimensional 1[AnO2(IO3)3]1−(An=U,Np) ribbons that consist of approximately linear actinyl(VI) cations bound by iodate anions to yield AnO7 pentagonal bipyramids. The AnO7 units are linked by bridging iodate anions to yield chains that are in turn coupled by additional iodate anions to yield ribbons. The edges of the ribbons are terminated by monodentate iodate anions. For 1 and 2, K+ cations and water molecules separate the ribbons from one another. In addition, isolated iodate anions are also found between 1[UO2(IO3)3]1− ribbons in 1. In order to aid in the assignment of oxidation states in neptunyl containing compounds, a bond-valence sum parameter of 2.018 Å for Np(VI) bound exclusively to oxygen has been developed with b=0.37 Å. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, , a=7.0609(4) Å, b=14.5686(8)  Å, c=14.7047(8)  Å, α=119.547(1)°, β=95.256(1)°, γ=93.206(1)°, Z=2, R(F)=2.49% for 353 parameters with 6414 reflections with I>2σ(I); (203 K, MoKα, λ=0.71073): 2, monoclinic, P21/c, a=7.796(4)  Å, b=7.151(3)  Å, c=21.79(1)  Å, β=97.399(7)°, Z=4, R(F)=6.33% for 183 parameters with 2451 reflections with I>2σ(I).  相似文献   

10.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

11.
A new open-framework compound, [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O, (DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH22+ (C6H14N22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO7 units. [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P21/n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2σ(I).  相似文献   

12.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

13.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

14.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

15.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

16.
A new rare earth nickel stannide, Sm2NiSn4, has been prepared by reacting the pure elements at high temperature in welded tantalum tubes. Its crystal structure was established by single crystal X-ray diffraction studies. Sm2NiSn4 crystallizes in the orthorhombic space group Pnma (No. 62) with cell parameters of a=16.878(2) Å, b=4.4490(7) Å, c=8.915(1) Å, and Z=4. Its structure can be viewed as the intermediate type between ZrSi2 and CeNiSi2. Sm2NiSn4 features two-dimensional (2D) corrugated [NiSn4]6− layers in which the 1D Sn zigzag chains and the 2D Sn square sheets are bridged by Ni atoms. The Sm3+ cations are located at the interlayer space. Results of both resistivity measurements and extended-Hückel tight-binding band structure calculations indicate that Sm2NiSn4 is metallic.  相似文献   

17.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   

18.
The title compounds were prepared by arc-melting pre-annealed mixtures of Ti, Mo, and As. Both Ti2MoAs2 and Ti3MoAs3 adopt structures formed by the corresponding binary vanadium arsenides, V3As2 and β-V4As3. Ti2MoAs2 crystallizes in the tetragonal space group P4/m, with a=9.706(4) Å, c=3.451(2) Å, V=325.1(3) Å3 (Z=4), and Ti3MoAs3 in the monoclinic space group C2/m, with a=14.107(3) Å, b=3.5148(7) Å, c=9.522(2) Å, β=100.66(3)°, V=464.0(2) Å3 (Z=4). In both cases, the metal atoms form infinite chains of trans edge-condensed octahedra, and the As atoms are located in (capped) trigonal prismatic voids. While most metal atom sites exhibit mixed Ti/Mo occupancies, the Mo atoms prefer the sites with more metal atom and fewer As atom neighbors. Ti2MoAs2 and Ti3MoAs3 are metallic entropy-stabilized materials that decompose upon annealing at intermediate temperatures.  相似文献   

19.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

20.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号