首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

2.
The known 1,3,4-oxathiazol-2-ones with crystal structures reported in the Cambridge Structural Database are limited (13 to date) and this article expands the library to 15. In addition, convenient starting materials for the future exploration of 1,3,4-oxathiazol-2-ones are detailed. An unexpected halogenated propanamide has also been identified as a by-product of one reaction, presumably reacting with HCl generated in situ. The space group of 5-[(E)-2-chloroethenyl]-1,3,4-oxathiazol-2-one, C4H2ClNO2S, ( 1 ), is P21, with a high Z′ value of 6; the space group of rac-2,3-dibromo-3-chloropropanamide, C3H4Br2ClNO, ( 2 ), is P21, with Z′ = 4; and the structure of rac-5-(1,2-dibromo-2-phenylethyl)-1,3,4-oxathiazol-2-one, C10H7Br2NO2S, ( 3 ), crystallizes in the space group Pca21, with Z′ = 1. Both of the structures of compounds 2 and 3 are modeled with two-component disorder and each molecular site hosts both of the enantiomers of the racemic pairs (S,S)/(R,R) and (R,S)/(S,R), respectively.  相似文献   

3.
The title compound, tricalcium monogermanate dichloride, is orthorhombic and consists of one distinct Ge site on special position 4c, site symmetry m, and two different Ca sites, Ca1 and Ca2, one on general position 8d, site symmetry 1, and the other on special position 4c. Two of the O atoms occupy the 4c position (symmetry m); the third O atom is situated on the general 8d position, symmetry 1, as is the one distinct Cl position. By sharing common edges, the distorted Ca1 octahedra form infinite crankshaft‐like chains parallel to the b direction. Along a and c, these chains are connected to one another via common corners, thereby forming a three‐dimensional framework of edge‐ and corner‐sharing Ca1O4Cl2 octahedra. Triangular prisms of Ca2O4Cl2 polyhedra and GeO4 tetrahedra fill the interstitial space within the Ca1 polyhedral framework. Relationships between the structures of the title compound and the humite‐type materials norbergite (Mg3SiO4F2) and Mn3SiO4F2 are discussed.  相似文献   

4.
The formation region of the various types of layered titanium hydrogen phosphate hydrates was investigated. The materials were prepared by hydrothermal methods, treating amorphous titanium phosphate with phosphoric acid (8 to 16M) in the temperature range 175 to 250°C. The materials obtained were:α-Ti(HPO4)2·H2O,γ-Ti(PO4)(H2PO4)·2H2O, and its anhydrous formβ-Ti(PO4)(H2PO4). The structure ofβ-Ti(PO4)(H2PO4) has been determined by Rietveld powder refinement of high resolution neutron diffraction data. The structure is refined in the monoclinic space groupP21/n(No. 14). The unit cell parameters are:a=18.9503(4) Å,b=6.3127(1) Å,c=5.1391(1) Å,β=105.366(2)°;Z=4. The final agreement factors were:Rp=2.9% andRwp=3.8%. The structure ofβ-Ti(PO4)(H2PO4) is built from TiO6octahedra linked together by tertiary phosphate (PO4) and dihydrogen phosphate ((OH)2PO2) tetrahedra. The layers are held together by hydrogen bonds.  相似文献   

5.
A series of [Mn6O2(R1OH)4(sao)6(R2COO)2] complexes with terminal functional groups ( 1 : R1 = CH3, R2 = HO‐C6H4, 2 : R1 = C2H5, R2 = H2N‐C6H4, 3 : R1 = CH3, R2 = Cl‐C6H4, 4 : R1 = CH3, R2 = CH3S‐C6H4, 5 : R1 = CH3, R2 = I‐C6H4, 6 : R1 = CH3, R2 = pymSCH2, 7 : R1 = CH3, R2 = ortho‐pyr‐SCH3, 8 : R1 = C2H5, R2 = (CH3)3OOCNHCH2C6H4; sao = doubly deprotonated salicylaldoxime ligand, pym = pyrimidyl, pyr = pyridyl) have been obtained in a reaction of a ligand R2C6H4COOH, salicylaldoxime, manganese(II) perchlorate and [NEt4](OH) in methanol or a 1:1 mixture of ethanol and dichloromethane. In this report, structural aspects as well as preliminary studies of magnetic and thermal properties are presented. Compounds 1 , 3 , 6 , 8 exhibit an antiferromagnetic coupling of the Mn2+ ions, whereas 4 and 7 show ferromagnetic interactions. The title compounds may act as starting materials for further derivatization addressing the functional groups.  相似文献   

6.
Two donor–acceptor acridone-based compounds, namely, 2-{10-[4-(diphenylamino)phenyl]acridin-9-ylidene}malononitrile ( TPA-AD-DCN ), C34H22N4, and 2-{10-[4-(9H-carbazol-9-yl)phenyl]acridin-9-ylidene}malononitrile ( CzPh-AD-DCN ), C34H20N4, have been synthesized in high yield and their structures determined. TPA-AD-DCN and CzPh-AD-DCN crystallized in the centrosymmetric space groups P and P21/c, respectively. Both molecules adopt a `butterfly-like' configuration of the common part of the structure and differences occur within the substituents on the acridine N atom. A Hirshfeld surface analysis showed that the H…H and C…H/H…C contacts constitute a high percentage of the intermolecular interactions. The optical and electrochemical properties, as well as theoretical calculations, of TPA-AD-DCN and CzPh-AD-DCN support the structural characterization of these materials. As crystallization-induced emission materials, TPA-AD-DCN and CzPh-AD-DCN are anticipated to be of potential use in the construction of promising optoelectronic materials.  相似文献   

7.
This short review reports on the synthesis of nanosized electrode materials for lithium-ion batteries by mechanical activation (MA) and studies of their properties. Different structural types of compounds were considered, namely, compounds with a layered (LiNi1 − xy Co x Mn y O2), spinel (LiMn2O4, Li4Ti5O12), and framework (LiFePO4, LiTi2(PO4)3) structures. The compounds also differed in electronegativity, which varied from 10−4 S cm−1 for LiCoO2 to 10−9 S cm−1 for LiFePO4. The preliminary MA of mixtures of reagents in energy intensive mechanoactivators led to the formation of highly reactive precursors, and annealing of the latter formed nanosized products (the mean particle size is 50–200 nm). The local structure of the synthesized compounds and the composition of their surface were studied by spectral methods. An increase in the dispersity and defect concentration, especially in the region of the surface, improved some electrochemical characteristics. It increased the stability during cycling (LiMn2O4, at 3 V) and the regions of the formation of solid solutions during cycling (Li4Ti5O12, LiFePO4), led to growth of surface Li-ion conductivity (LiTi2(PO4)3), etc. The mechanochemical approach was also used for the synthesis of core-shell type composite materials (LiFePO4/C, LiCoO2/MeO x ) and materials based on two active electrode components (LiCoO2/LiMn2O4).  相似文献   

8.
Novel liquid crystalline photochromic materials of the type 4-R-C6H4-N=N-C6H4-O(CH2)n-N(CH2CH2OH)2, where R is NO2, H, CN, O-n-C8H17, phenyl, 4-O2NC6H4, were prepared. Some of them are photoconductive. These materials were used for the preparation of light-sensitive polymers in which the photoactive moieties were attached to polyurethane chain. Photochromism of these compounds is based on trans-cis isomerization of azobenzene group. An example of the photochromic activity is presented on solid solution of one material (R = O-n-C8H17, n = 5) in poly(methyl methacrylate) matrix.  相似文献   

9.
Nowadays, two‐dimensional materials have many applications in materials science. As a novel two‐dimensional layered material, MXene possesses distinct structural, electronic, and chemical properties; thus, it has potential applications in many fields, including battery electrodes, energy storage materials, sensors, and catalysts. Up to now, more than 70 MAX phases have been reported. However, in contrast to the variety of MAX phases, the existing MXene family merely includes Ti2C, Ti3C2, (Ti1/2, Nb1/2)2C, (V1/2, Cr1/2)3C2, Nb2C, Ti3CN, Ta4C3, V2C, and Nb4C3. Among these materials, the Ti3C2Tx MXene exhibits prominently high volumetric capacitance, and the rate at which it transports electron is suitable for electrode materials in batteries and supercapacitors. Hence, Ti3C2Tx is commonly utilized as an electrode material in ion batteries such as Li+, Na+, K+, Mg2+, Ca2+, and Al3+ batteries. What is more, Ti2C has the biggest specific surface area among all of these potential MXene phases, and therefore, Ti2C has remarkably high gravimetric hydrogen storage capacities. In addition, Ti2CO2 materials display extremely high activity for CO oxidation, which makes it possible to design catalysts for CO oxidation at low temperatures. Furthermore, Ti3C2Tx with O, OH, and/or F terminations can be used for water purification owing to excellent water permeance, favorable filtration ability, and long‐time operation ability. This review supplies a relatively comprehensive summary of various applications of MXenes over the past few years.  相似文献   

10.
The series La2 − x Sr x NiO4 (x = 0.0, 0.05, 0.15, 0.25, 0.35, and 1.0) was tested for functionality as electrode materials for direct electrochemical reduction of NO. The materials were tested using cyclic voltammetry in 1% NO and 10% O2 in Ar on a cone-shaped electrode. The best materials for the electrochemical reduction of NO are La2NiO4 and LaSrNiO4, which have current densities for NO reduction 1.82 and 7.09 times higher, respectively, than for O2 at 400 °C. Increasing the temperature decreased the ability to reduce NO before O2 while the activity increased. The adsorbed species during direct decomposition was attempted, clarified using X-ray absorption near-edge structure experiments and thermogravimetry, but no conclusive results were obtained.  相似文献   

11.
Reactivity of 2‐(4‐hydroxyphenyl)‐1H‐imidazoline and 2‐(4‐hydroxyphenyl)‐1H‐imidazole toward substituted phenyl isocyanates was studied. When mentioned imidazoline was treated with 2.5 equiv of substituted phenyl isocyanate, three N,O‐dicarboxamides were prepared (substituents are H, 4‐NO2, and 4‐CH3). Subsequently, N,O‐diacetylated 2‐(4‐hydroxyphenyl)‐1H‐imidazoline was prepared and selective deprotection method was developed for preparation of 1‐acetyl‐2‐(4‐hydroxyphenyl)‐1H‐imidazoline using diethylamine in acetone. Six carbamates derived from this imidazoline were then prepared using 1.1 equiv of substituted phenyl isocyanates (substituents are H, 4‐CH3, 4‐OCH3, 4‐NO2, 4‐CN, and 3‐CF3). Finally, two carbamates were prepared from 2‐(4‐hydroxyphenyl)‐1H‐imidazole (substituents are 4‐NO2 and 4‐CN). No reactivity to imidazole ring was observed in this case. Eight derivatives were subjected to antimycobacterial screening. Concurrently, reactivity of 2‐(2‐aminophenyl)‐ and 2‐(2‐hydroxyphenyl)‐1H‐imidazole toward aliphatic and aromatic isocyanates was studied. Eight ureas were prepared using equivalent mixture of 2‐(2‐aminophenyl)‐1H‐imidazole and isocyanate (Et, Pr, isoPr, terc‐Bu, Cy, Ph, 4‐CH3C6H4, 4‐CNC6H4). Similar attempts to obtain related carbamates from 2‐(2‐hydroxyphenyl)‐1H‐imidazole lead only to three substituted phenyl carbamates (substituents are 4‐CH3, 4‐NO2, and 4‐CN). In both cases, no reactivity to imidazole ring was observed again.  相似文献   

12.
Two classical copper(I)‐cluster‐based luminophores, namely, Cu4I4 and [Cu3Pz3]2 (Pz=pyrazolate), are immobilized in a supramolecular system through the formation of metal–organic framework (MOF) materials. This series of luminescent MOF materials, namely, [Cu4I4(NH3)Cu3( L1 )3]n, [Cu4I4(NH2CH3)Cu3( L1 )3]n, and [Cu4I4Cu3( L2 )3]n ( L1 =3‐(4‐pyridyl)‐5‐(p‐tolyl)pyrazolate; L2 =3‐(4‐pyridyl)‐5‐(2,4‐dimethylphenyl)pyrazolate), exhibit diverse thermochromism attributed to the relative functioning efficacy of the two coordination luminophores. Such an intriguing chemopalette effect is regulated by the different supramolecular microenvironments between the two‐dimensional layers of these MOFs, and in particular, by the fine‐tuned Cu–Cu distances in the excimeric [Cu3Pz3]2 luminophore. The structure–property elucidation of the thermochromic behavior allows one to understand these optical materials with unusual dual‐emissive properties.  相似文献   

13.
A combinatorial chemistry approach has been used to synthesize an array of Schiff bases, five of which, namely N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐3‐nitro­aniline, C16H14N2O3, (1a), N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐4‐nitro­aniline, C16H14N2O3, (2a), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐3‐nitro­aniline, C17H17N3O2, (1b), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐4‐nitro­aniline, C17H17N3O2, (2b), and N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐2‐methyl‐4‐nitro­aniline, C18H19N3O2, (3b), have been structurally characterized. A stack structure is observed for (1a) and (1b) in the crystal phase. Experimental and calculated molecular structures are discussed for these compounds which belong to a chemical class having potential applications as non‐linear optical materials.  相似文献   

14.
In recent years, cocrystallization has emerged as an effective way of tuning the properties of compounds and has been widely used in the field of energetic materials. In this study, we have prepared two novel cocrystals of CL‐20 and methylimidazole, including a 1:2 CL‐20 / 2‐mercapto‐1‐methylimidazole ( 1 ) and a 1:4 CL‐20 / 4‐methyl‐5‐nitroimidazole ( 2 ). Cocrystal 1 has good physical and detonation properties (ρ1 = 1.652 g · cm–3, D1 = 7073 m · s–1, P1 = 21.6 GPa); however, cocrystal 2 shows higher properties (ρ2 = 1.680 g · cm–3, D2 = 7945 m · s–1, P2 = 27.4 GPa). The performance of both cocrystals is better than those of TNT. Thermal performance suggests that both the cocrystals have moderate thermal stabilities. Cocrystal 1 decomposes at 164.9 °C and cocrystal 2 has an exothermic peak at 221 °C. Both cocrystals are insensitive energetic explosives (IS > 40 J, FS > 360 N). Methylimidazole compounds are rarely used as coformers to form cocrystals with CL‐20, which possess good properties for a range of potential applications. Herein, we provide new possible directions for enriching cocrystal speciation.  相似文献   

15.
The polymerization of metal alkoxides was carried out in organic solvents and light responsive polymers were obtained. As starting materials for polymerization, Ti(OBu)4, Zr(OBu)4, Nb(OEt)5, and Ta(OEt)5 were used. The polymerization yield roughly corresponds to the formation of TiO2, ZrO2, NbO2(OEt), and TaO2(OEt), respectively. The polymers obtained are paramagnetic and all give similar (dark) ESR spectra. When illuminated by visible light, a new ESR absorption is detected in the vicinity of g = 2.00, or 330–340 mT (for 9.450 GHz) region. The formation and decay rates of this ESR absorption was measured. The decay rate constants obtained from the formation curves were larger than those obtained from the decay curves, indicating relatively short lived species are formed during light illumination. The polymers thus prepared have photocatalytic activity and can photolyze 1 : 1 methanol/water system with visible light. Other possible uses of these polymers as paramagnetic or photochromic materials are discussed.  相似文献   

16.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

17.
Coordination equilibrium constants (K NiS) of some donor solvent molecules to 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecanenickel(II) ([Ni(Me4[12]aneN4)]2+) were determined in nitrobenzene (a noncoordinating bulk solvent). The first (K NiS1) and second stepwise coordination equilibrium constants (K NiS2) for 1,4,7,10-tetraazacyclododecanenickel(II) ([Ni([12]aneN4)]2+), 1,4,8,11-tetraazac yclotetradecane- nickel(II) ([Ni([14] aneN4)]2+), 1,4,8,11-tetrathiacyclotetra-decanenickel(II) ([Ni([14]aneS4)]2+) were also reinvestigated. The K NiS values for [Ni(Me4[12]aneN4)]2+ were compared to those of [Ni([12]aneN4)]2+, (1R,4S, 8R,11S)-1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecanenickel(II) (R,S,R,S-[Ni(Me4[14]aneN4)]2+), R,R,S,S-[Ni(Me4[14]aneN4)]2+, [Ni([14]aneN4)]2+, and [Ni([14]aneS4)]2+. Coordination of pyridine (Py), N,N,N′,N′-tetramethylurea (TMU), and N,N-dimethylacetamide (DMA) to [Ni(Me4[12]aneN4)]2+ was observed, although these donor solvent molecules did not coordinate to R,S,R,S-[Ni(Me4[14]aneN4)]2+. The K NiS values for Py, TMU, and DMA are 7.9, 2.8, and 9.0 dm3⋅mol−1, respectively. Some hydrogen-bonding waters were coordinated to R,S,R,S-[Ni(Me4[14]aneN4)]2+, but such waters did not coordinate to [Ni(Me4[12] aneN4)]2+. Also, the K NiS2 values were larger than the corresponding K NiS1 values for [Ni([14]aneS4)]2+. Furthermore, the K NiS1 values for [Ni([12]aneN4)]2+ were the largest among these nickel(II) complex cations. The K NiS, K NiS1, and K NiS2 values are discussed in terms of properties of the donor solvents and steric strains of these nickel(II) complex cations.  相似文献   

18.
A convenient one‐step condensation of p‐R‐acetophenones, dioxane dibromide, and N,N′ dialkylthioureas was developed as a synthetic access to derivatives of 2‐amino‐1,3‐thiazoline, such as N‐[4‐(4‐R‐phenyl)‐3‐R1‐2,3‐dihydro‐1,3‐thiazol‐2‐yliden]‐N‐(R1)amine, where R=H, Br, NO2, or CH3O, and R1=CH3, CH3CH2, CH3CH2CH2CH2, or Ph. Unlike the routine syntheses of similar compounds based on lachrymatory ω‐halogenated acetophenones, the one‐step approach escapes the preparation and dealing with inconvenient starting materials. The yields based on the starting p‐R‐acetophenones were in the range of 57–70%.  相似文献   

19.
Four axially substituted titanium(IV)phthalocyanines of formula trans‐[PcTi(OSiPh3)2], [PcTi{(NH)2C6H4}], [PcTi(η2‐S2)], and [PcTi=S] were prepared starting from the reactive species N,N′‐di‐4‐tolylureato(phthalocyaninato)titanium(IV). The prepared compounds were characterized by using UV/Vis‐spectroscopy, FT‐IR and raman spectroscopy, TGA, elementalanalysis and MALDI‐TOF measurements. The compound trans‐[PcTi(OSiPh3)2] crystallizes from chlorobenzene in the triclinic space group P with a = 10.4160(8) Å, b = 11.2160(8) Å, c = 13.1495(9) Å, α = 114.124(5)°, β = 99.452(6)°, γ = 96.174(6)°, and Z = 1. [PcTiS2] crystallizes from chlorobenzene in the monoclinic space group P21/n with a = 13.114(3) Å, b = 9.752(2) Å, c = 20.975(5) Å, β = 100.46(2), and Z = 4. The crystal structures of both compounds are discussed. The reactive ureato complex could also successfully be anchored onto SBA‐15 and TiOx@SBA‐15 materials using the apical ureato ligand as a good leaving group for the reaction with the silanol groups of the host material.  相似文献   

20.
Postsynthetic metal and ligand exchange is a versatile approach towards functionalized MFU‐4l frameworks. Upon thermal treatment of MFU‐4l formates, coordinatively strongly unsaturated metal centers, such as zinc(II) hydride or copper(I) species, are generated selectively. CuI‐MFU‐4l prepared in this way was stable under ambient conditions and showed fully reversible chemisorption of small molecules, such as O2, N2, and H2, with corresponding isosteric heats of adsorption of 53, 42, and 32 kJ mol?1, respectively, as determined by gas‐sorption measurements and confirmed by DFT calculations. Moreover, CuI‐MFU‐4l formed stable complexes with C2H4 and CO. These complexes were characterized by FTIR spectroscopy. The demonstrated hydride transfer to electrophiles and strong binding of small gas molecules suggests these novel, yet robust, metal–organic frameworks with open metal sites as promising catalytic materials comprising earth‐abundant metal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号